Sepsis is a life-threatening organ dysfunction that is caused by a dysregulated host response to infection. Surviving patients have cognitive and memory damage that started during sepsis. These neurologic damages have been associated with increased BBB permeability and microglial activation. However, a few discrete studies have seen over the years pointing to the potential role of astrocytes in the pathophysiology of neurological damage after sepsis. The purpose of this article is to review information on the potential role of astrocytes during sepsis, as well as to provoke further studies in this area. These published articles show astrocytic activation after sepsis; they also evidence the release of inflammatory mediators by these cells. In this sense, the role of astrocytes should be better elucidated during sepsis progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-022-03027-7 | DOI Listing |
J Inflamm Res
December 2024
Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
Introduction: Systemic lupus erythematosus is a heterogeneous autoimmune disease. A burst of autoimmune reactions in various systems can lead to severe clinical conditions closely associated with mortality. T cells serve as mediators that drive the occurrence and maintenance of inflammatory processes.
View Article and Find Full Text PDFNeurosci Lett
December 2024
School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:
Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. Electronic address:
Ischemic stroke is a kind of neurological dysfunction caused by cerebral ischemia. Astrocytes, as the most abundant type of glial cells in the central nervous system, are activated into reactive astrocytes after cerebral ischemia, and this process involves the activation or change of a series of cell surface receptors, ion channels and ion transporters, GTPases, signaling pathways, and so on. The role of reactive astrocytes in the development of ischemic stroke is time-dependent.
View Article and Find Full Text PDFNeuroscience
December 2024
Departamento de Neurobiología y Neuropatología, IIBCE, MEC, Montevideo, Uruguay. Electronic address:
Iron is one of the crucial elements for CNS development and function and its deficiency (ID) is the most common worldwide nutrient deficit in the world. Iron deficiency anemia (IDA) in pregnant women and infants is a worldwide health problem due to its high prevalence and its irreversible long-lasting effects on brain development. Even with iron supplementation, IDA during pregnancy and/or breastfeeding can result in irreversible cognitive, motor, and behavioral impairments.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, Union Hospital of Jilin University, Changchun, 130000, China.
Alzheimer's disease (AD) is a severe neurodegenerative disease, and the most common type of dementia, with symptoms of progressive cognitive dysfunction and behavioral impairment. Studying the pathogenesis of AD and exploring new targets for the prevention and treatment of AD is a very worthwhile challenge. Accumulating evidence has highlighted the effects of fatty acid metabolism on AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!