Periodontitis is an inflammatory disease that, if not treated, can cause a lot of harm to the oral cavity, to the patients' quality of life, and to the entire community. There is no predictable standardized treatment for periodontitis, but there have been many attempts, using antibiotics, tissue regeneration techniques, dental scaling, or root planning. Due to the limits of the above-mentioned treatment, the future seems to be local drug delivery systems, which could gradually release antibiotics and tissue regeneration inducers at the same time. Local gradual release of antibiotics proved to be more efficient than systemic administration. In this review, we have made a literature search to identify the articles related to this topic and to find out which carriers have been tested for drug release as an adjuvant in the treatment of periodontitis. Considering the inclusion and exclusion criteria, 12 articles were chosen to be part of this review. The selected articles indicated that the drug-releasing carriers in periodontitis treatment were membranes and films fabricated from different types of materials and through various methods. Some of the drugs released by the films and membranes in the selected articles include doxycycline, tetracycline, metronidazole, levofloxacin, and minocycline, all used with good outcome regarding their bactericide effect; BMP-2, Zinc-hydroxyapatite nanoparticles with regenerative effect. The conclusion derived from the selected studies was that gradual drug release in the periodontal pockets is a promising strategy as an adjuvant for the treatment of periodontal disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503414 | PMC |
http://dx.doi.org/10.3390/membranes12090895 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Stable hollow-type microspheres (MSs) have been fabricated using α-synuclein (αS), an amyloidogenic protein, via freeze-induced protein self-assembly. This assembly process involves three steps: rapid freezing to form spherical protein condensates from αS oligomers, frozen annealing to form a crust on the condensate and freeze-drying to create an interior lumen via the three-dimensional (3D) coffee-stain effect. The crust produced during the frozen-annealing step is a β-sheet-mediated protein structure that is presumed to be created at the quasi-liquid layer of the protein-ice interface and thus contributes to the stability of MSs in aqueous solutions at room temperature without any additional surface stabilization.
View Article and Find Full Text PDFFront Immunol
December 2024
Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States.
Introduction: Thymic stromal lymphopoietin (TSLP) is a master regulator of allergic inflammation against pathogens at barrier surfaces of the lung, skin, and gut. However, aberrant TSLP activity is implicated in various allergic, chronic inflammation and autoimmune diseases and cancers. Biologics drugs neutralizing excess TSLP activity represented by tezepelumab have been approved for severe asthma and are being evaluated for the treatments of other TSLP-mediated diseases.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
The locus coeruleus (LC) plays a vital role in cognitive function through norepinephrine release. Impaired LC neuronal health and function is linked to cognitive decline during ageing and Alzheimer's disease. This study investigates age-related alterations in olfactory detection and discrimination learning, along with its reversal, in Long-Evans rats, and examines the effects of atomoxetine (ATM), a norepinephrine uptake inhibitor, on these processes.
View Article and Find Full Text PDFAdv Mater
December 2024
Frontiers Science Centre for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
Effective intratumoral distribution of anticancer agents with good tumor penetration is of great practical importance for oncotherapy. How to break the limitation of traditional passive drug delivery relying on blood circulatory system into solid tumors remains a challenge. Herein, a light-directed self-powered nanorobot based on zirconium-based porphyrin metal-organic framework (MOF) is reported for smart delivery of chemodrug and photosensitizer for deep tumor penetration.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Chemotherapy is still one of the major approaches in triple-negative breast cancer (TNBC) treatment. The development of new formulations for classic chemotherapeutic drugs remains interests in studies. Camptothecin (CPT) is powerful antitumor agents in TNBC treatment though its clinic applications are limited by its low water solubility and systemic toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!