Mixed ionic-electronic conducting materials are not used as a single-layer electrolyte of solid oxide fuel cells (SOFCs) at relatively high operating temperatures of ~800 °C. This is because of a significant decrease in the open-circuit voltage (OCV) and, consequently, the SOFC power density. The paper presents a comparative analysis of the anode-supported SOFC properties obtained within the temperature range of 600 to 800 °C with yttria-stabilized zirconia (YSZ) electrolyte and gadolinium-doped ceria (GDC) electrolyte thin films. Electrolyte layers that are 3 µm thick are obtained by magnetron sputtering. It is shown that at 800 °C, the SOFC with the GDC electrolyte thin film provides an OCV over 0.9 V and power density of 2 W/cm. The latter is comparable to the power density of SOFCs with the YSZ electrolyte, which is a purely ionic conductor. The GDC electrolyte manifests the high performance, despite the SOFC power density loss induced by electronic conductivity of the former, which, in turn, is compensated by its other positive properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504200PMC
http://dx.doi.org/10.3390/membranes12090896DOI Listing

Publication Analysis

Top Keywords

power density
16
gdc electrolyte
12
solid oxide
8
oxide fuel
8
fuel cells
8
thin film
8
gadolinium-doped ceria
8
electrolyte
8
sofc power
8
800 °c
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!