A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photocatalytic Performance Improvement by Doping Ag on ZnO/MWCNTs Nanocomposite Prepared with Pulsed Laser Ablation Method Based Photocatalysts Degrading Rhodamine B Organic Pollutant Dye. | LitMetric

ZnO/MWCNTs nanocomposite has significant potential in photocatalytic and environmental treatment. Unfortunately, its photocatalytic efficacy is not high enough due to its poor light absorbance and quick recombination of photo-generated carriers, which might be improved by incorporation with noble metal nanoparticles. Herein, Ag-doped ZnO/MWCNTs nanocomposite was prepared using a pulsed laser ablation approach in the liquid media and examined as a degradable catalyst for Rhodamine B. (RhB). Different techniques were used to confirm the formation of the nanostructured materials (ZnO and Ag) and the complete interaction between them and MWCNTs. X-ray diffraction pattern revealed the hexagonal wurtzite crystal structure of ZnO and Ag. Additionally, UV-visible absorption spectrum was used to study the change throughout the shift in the transition energies, which affected the photocatalytic degradation. Furthermore, the morphological investigation by a scanning electron microscope showed the successful embedding and decoration of ZnO and Ag on the outer surface of CNTs. Moreover, the oxidation state of the formed final nanocomposite was investigated via an X-ray photoelectron spectrometer. After that, the photocatalytic degradations of RhB were tested using the prepared catalysts. The results showed that utilizing Ag significantly impacted the photo degradation of RhB by lowering the charge carrier recombination, leading to 95% photocatalytic degradation after 12 min. The enhanced photocatalytic performance of the produced nanocomposite was attributed to the role of the Ag dopant in generating more active oxygen species. Moreover, the impacts of the catalyst amount, pH level, and contact time were discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505665PMC
http://dx.doi.org/10.3390/membranes12090877DOI Listing

Publication Analysis

Top Keywords

zno/mwcnts nanocomposite
12
photocatalytic performance
8
nanocomposite prepared
8
prepared pulsed
8
pulsed laser
8
laser ablation
8
photocatalytic degradation
8
photocatalytic
7
nanocomposite
5
performance improvement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!