The heightened dipolar interactions in solids render solid-state NMR (ssNMR) spectra more difficult to interpret than solution NMR spectra. On the other hand, ssNMR does not suffer from severe molecular weight limitations like solution NMR. In recent years, ssNMR has undergone rapid technological developments that have enabled structure-function studies of increasingly larger biomolecules, including membrane proteins. Current methodology includes stable isotope labeling schemes, non-uniform sampling with spectral reconstruction, faster magic angle spinning, and innovative pulse sequences that capture different types of interactions among spins. However, computational tools for the analysis of complex ssNMR data from membrane proteins and other challenging protein systems have lagged behind those for solution NMR. Before a structure can be determined, thousands of signals from individual types of multidimensional ssNMR spectra of samples, which may have differing isotopic composition, must be recognized, correlated, categorized, and eventually assigned to atoms in the chemical structure. To address these tedious steps, we have developed an automated algorithm for ssNMR spectra called "ssPINE". The ssPINE software accepts the sequence of the protein plus peak lists from a variety of ssNMR experiments as inputs and offers automated backbone and side-chain assignments. The alpha version of ssPINE, which we describe here, is freely available through a web submission form.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503581 | PMC |
http://dx.doi.org/10.3390/membranes12090834 | DOI Listing |
J Am Chem Soc
December 2024
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.
Soil organic matter (SOM) plays a major role in mitigating greenhouse gas emission and regulating earth's climate, carbon cycle, and biodiversity. Wetland soils account for one-third of all SOM; however, globally, coastal wetland soils are eroding faster due to increasing sea-level rise. Our understanding of carbon sequestration dynamics in wetlands lags behind that of upland soils.
View Article and Find Full Text PDFChem Sci
November 2024
Iowa State University, Department of Chemistry Ames IA 50011 USA
Supported single-site platinum hydride compounds are promising heterogeneous catalysts for organic transformations. Few methods exist to describe the structures of single-site Pt catalysts with atomic resolution because of their disordered structures and low Pt loadings. Here, we study the compounds formed when bis(tri--butylphosphino)platinum, Pt(P Bu), is supported on dehydroxylated SiO or SiO-AlO.
View Article and Find Full Text PDFBiophys J
December 2024
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland. Electronic address:
Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below a temperature T. To investigate whether local conformational distributions are detectably different in the homogeneous (i.e.
View Article and Find Full Text PDFEndogenous phospholipids influence the conformational equilibria of G protein-coupled receptors, regulating their ability to bind drugs and form signaling complexes. However, most studies of GPCR-lipid interactions have been carried out in mixed micelles or lipid nanodiscs. Though useful, these membrane mimetics do not fully replicate the physical properties of native cellular membranes associated with large assemblies of lipids.
View Article and Find Full Text PDFJ Phys Chem B
October 2024
Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Solid-state NMR spectroscopy (SSNMR) is a powerful technique to probe structural and dynamic properties of biomolecules at an atomic level. Modern SSNMR methods employ multidimensional pulse sequences requiring data collection over a period of days to weeks. Variations in signal intensity or frequency due to environmental fluctuation introduce artifacts into the spectra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!