Interaction of Bortezomib with Cell Membranes Regulates Its Toxicity and Resistance to Therapy.

Membranes (Basel)

LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

Published: August 2022

Bortezomib (BTZ) is a potent proteasome inhibitor currently being used to treat multiple myeloma. However, its high toxicity and resistance to therapy severely limit the treatment outcomes. Drug-membrane interactions have a crucial role in drugs' behavior in vivo, affecting their bioavailability and pharmacological activity. Additionally, drugs' toxicity often occurs due to their effects on the cell membranes. Therefore, studying BTZ's interactions with cell membranes may explain the limitations of its therapy. Due to the cell membranes' complexity, lipid vesicles were proposed here as biomembrane models, focusing on the membrane's main constituents. Two models with distinct composition and complexity were used, one composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the other containing DMPC, cholesterol (Chol), and sphingomyelin (SM). BTZ's interactions with the models were evaluated regarding the drugs' lipophilicity, preferential location, and effects on the membrane's physical state. The studies were conducted at different pH values (7.4 and 6.5) to mimic the normal blood circulation and the intestinal environment, respectively. BTZ revealed a high affinity for the membranes, which proved to be dependent on the drug-ionization state and the membrane complexity. Furthermore, BTZ's interactions with the cell membranes was proven to induce changes in the membrane fluidity. This may be associated with its resistance to therapy, since the activity of efflux transmembrane proteins is dependent on the membrane's fluidity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500884PMC
http://dx.doi.org/10.3390/membranes12090823DOI Listing

Publication Analysis

Top Keywords

cell membranes
16
resistance therapy
12
btz's interactions
12
toxicity resistance
8
interactions cell
8
cell
5
membranes
5
interaction bortezomib
4
bortezomib cell
4
membranes regulates
4

Similar Publications

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro.

View Article and Find Full Text PDF

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

Purpose: Describe aims, methods, characteristics of donors, donor corneas and recipients, and potential impact of the Diabetes Endothelial Keratoplasty Study (DEKS).

Methods: The DEKS is a randomized, clinical trial to assess graft success and endothelial cell density (ECD) 1 year after Descemet membrane endothelial keratoplasty (DMEK) using corneas from donors with versus without diabetes in a 1:2 minimization assignment. Diabetes severity in the donor is assessed by medical history, postmortem HbA1c, and donor skin advanced glycation end-products and oxidation markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!