Membrane fouling significantly hinders the widespread application of membrane technology. In the current study, a support vector machine (SVM) and artificial neural networks (ANN) modelling approach was adopted to optimize the membrane permeability in a novel membrane rotating biological contactor (MRBC). The MRBC utilizes the disk rotation mechanism to generate a shear rate at the membrane surface to scour off the foulants. The effect of operational parameters (disk rotational speed, hydraulic retention time (HRT), and sludge retention time (SRT)) was studied on the membrane permeability. ANN and SVM are machine learning algorithms that aim to predict the model based on the trained data sets. The implementation and efficacy of machine learning and statistical approaches have been demonstrated through real-time experimental results. Feed-forward ANN with the back-propagation algorithm and SVN regression models for various kernel functions were trained to augment the membrane permeability. An overall comparison of predictive models for the test data sets reveals the model’s significance. ANN modelling with 13 hidden layers gives the highest R2 value of >0.99, and the SVM model with the Bayesian optimizer approach results in R2 values higher than 0.99. The MRBC is a promising substitute for traditional suspended growth processes, which aligns with the stipulations of ecological evolution and environmentally friendly treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504877 | PMC |
http://dx.doi.org/10.3390/membranes12090821 | DOI Listing |
Int J Pharm
January 2025
NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain. Electronic address:
Cell microencapsulation technologies allow non-autologous implantation of therapeutic cells for sustained drug delivery purposes. The perm-selective membrane of these systems provides resistance to rupture, stablishes the upper molecular weight limit in bidirectional diffusion of molecules, and affects biocompatibility. Thus, despite being a decisive factor to succeed in terms of biosafety and therapeutic efficacy, little progress has been made in its optimization so far.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China. Electronic address:
Bisphenol A (BPA) is a common endocrine disruptor chemical that is widely used in the production of food plastic packaging, and it has been shown to potentially harm the reproductive system. However, the specific mechanism by which BPA induces apoptosis of Leydig cells (LCs) and inhibits testosterone synthesis in these cells is unclear. In the present study, TM3 cells were used as an experimental model in combination with a reactive oxygen species (ROS) scavenger (N-acetylcysteine), Caspase-3 inhibitor (Ac-DEVD-CHO), autophagy activator (Torin2), and autophagy inhibitor (Chloroquine) to investigate the potential mechanisms by which BPA causes TM3 cell damage in vitro.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:
Plastic pollution has become a common phenomenon. The process of plastic degradation is accompanied by the release of microplastics and plasticizers. However, the coexistence of microplastics and plasticizers on the transfer of antibiotic resistance genes (ARGs) has not been reported until now.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.
View Article and Find Full Text PDFEnviron Res
January 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China. Electronic address:
Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!