Water availability influences all aspects of plant growth and development; however, most studies of plant responses to drought have focused on vegetative organs, notably roots and leaves. Far less is known about the molecular bases of drought acclimation responses in fruits, which are complex organs with distinct tissue types. To obtain a more comprehensive picture of the molecular mechanisms governing fruit development under drought, we profiled the transcriptomes of a spectrum of fruit tissues from tomato (Solanum lycopersicum), spanning early growth through ripening and collected from plants grown under varying intensities of water stress. In addition, we compared transcriptional changes in fruit with those in leaves to highlight different and conserved transcriptome signatures in vegetative and reproductive organs. We observed extensive and diverse genetic reprogramming in different fruit tissues and leaves, each associated with a unique response to drought acclimation. These included major transcriptional shifts in the placenta of growing fruit and in the seeds of ripe fruit related to cell growth and epigenetic regulation, respectively. Changes in metabolic and hormonal pathways, such as those related to starch, carotenoids, jasmonic acid, and ethylene metabolism, were associated with distinct fruit tissues and developmental stages. Gene coexpression network analysis provided further insights into the tissue-specific regulation of distinct responses to water stress. Our data highlight the spatiotemporal specificity of drought responses in tomato fruit and indicate known and unrevealed molecular regulatory mechanisms involved in drought acclimation, during both vegetative and reproductive stages of development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706477 | PMC |
http://dx.doi.org/10.1093/plphys/kiac445 | DOI Listing |
Appl Microbiol Biotechnol
December 2024
Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.
Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.
View Article and Find Full Text PDFToxins (Basel)
December 2024
College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China.
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish () were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment.
View Article and Find Full Text PDFPathophysiology
December 2024
Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, PO 1893, Km 2200, Route Sidi Harazem, Fez 30000, Morocco.
Chronic Kidney Disease of Unknown Etiology (CKDu) is a worldwide hidden health threat that is associated with progressive loss of kidney functions without showing any initial symptoms until reaching end-stage renal failure, eventually leading to death. It is a growing health problem in Asia, Central America, Africa, and the Middle East, with identified hotspots. CKDu disease mainly affects young men in rural farming communities, while its etiology is not related to hypertension, kidney stones, diabetes, or other known causes.
View Article and Find Full Text PDFNoncoding RNA
November 2024
School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA.
RNA plays important roles in the regulation of gene expression in response to environmental stimuli. , a long noncoding cis-natural antisense RNA, is a key component of regulating the response to cold temperature in . There are three mechanisms through which fine tunes the transcriptional response to cold temperatures.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Marine Engineering College, Dalian Maritime University, Dalian 116026, China.
Proton exchange membrane fuel cells (PEMFCs) are being pursued for applications in the maritime industry to meet stringent ship emissions regulations. Further basic research is needed to improve the performance of PEMFCs in marine environments. Assembly stress compresses the gas diffusion layer (GDL) beneath the ribs, significantly altering its pore structure and internal transport properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!