Ambrosia beetles, Fabricius, Blandford, and Ratzeburg (Coleoptera: Curculionidae: Scolytinae) are among the most significant hazelnut pests in Turkey. The control of these pests is difficult and expensive due to their biology. The present study aimed to isolate entomopathogenic fungi (EPF) from , , and individuals that were obtained from the main hazelnut production areas of Turkey, characterize the EPF isolates using internal transcribed spacer (ITS)-DNA sequencing and iPBS profiling, and determine the efficacy of the isolates against , , and under laboratory conditions. Phylogenetic analyses based on ITS revealed that the 47 native isolates were (11), (8), (6), (1), (13), (3), (2) and (3). For the first time, the primer binding site (PBS) marker system, based on retrotransposons, was used to discriminate successfully among the EPF species. Some isolates of , , , , and caused 100% mortality of the beetle species within 7 to 9 days. The findings of this study indicated that some isolated entomopathogenic fungi provide an essential basis for the development of bioproducts, as well as a promising alternative method for controlling these ambrosia beetles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502873 | PMC |
http://dx.doi.org/10.3390/insects13090824 | DOI Listing |
Microorganisms
November 2024
Department of Entomology, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ 85719, USA.
Hard ticks (family Ixodidae) are one of the most predominant arthropod disease vectors worldwide, second only to mosquitoes. In addition to harboring animal and human pathogens, ticks are known to carry a microbial community constituted of non-pathogenic organisms, which includes maternally inherited intracellular endosymbionts and other environmentally acquired extracellular microorganisms. These microbial communities, which include bacteria, viruses, protozoans, and fungi-with often commensal, mutualistic, or parasitic associations with the tick-comprise the tick microbiome, bacteria being the most studied community.
View Article and Find Full Text PDFPathogens
November 2024
Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias INIFAP, Boulevard Cuauhnahuac 8534, Jiutepec 62574, Morelos, Mexico.
is a blood-sucking parasite that causes heavy infestations on cattle and is a vector for severe tick-borne diseases, such as anaplasmosis and babesiosis, and poses a significant threat to the cattle industry. Cattle ticks show increasing acaricide resistance, which creates an additional problem concerning the inefficient chemical control of tick populations in cattle-grazing areas, necessitating the exploration of alternative tick biocontrol methods. Our study aimed to demonstrate the acaropathogenic efficacy of two bacterial species during experimental infections on .
View Article and Find Full Text PDFInsects
December 2024
College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
Ants as social insects live in groups, which increases the risk of contagious diseases. In response to the threat of pathogens, ants have evolved a variety of defense mechanisms, including incorporating antimicrobial chemicals into nest material for nest hygiene. is an arboreal ant, building its nest using plant tissues.
View Article and Find Full Text PDFInsects
December 2024
UK Management College, College House Campus, Stanley St., Openshaw, Manchester M11 1LE, UK.
Entomopathogenic fungi (EPFs) can infect and kill a diverse range of arthropods, including ticks (Acari: Ixodidae) that can transmit various diseases to animals and humans. Consequently, the use of EPFs as a biocontrol method for managing tick populations has been explored as an alternative to chemical acaricides, which may have harmful effects on the environment and non-target species. This review summarizes studies conducted on EPFs for tick control between 1998 and 2024, identifying 9 different EPF species that have been used against 15 different species of ticks.
View Article and Find Full Text PDFInsects
December 2024
School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
The large pine weevil ( L.) is a major pest in European and Asian coniferous forests, particularly in managed plantations where clear-felling practices create ideal conditions for its population growth. Traditional management practices involving synthetic insecticides have limited efficacy in terms of reducing pest populations and pose environmental risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!