The dipteran tachinid parasitoids are important biocontrol agents, and they must survive the harsh environment and rely on the resources of the host insect to complete their larval stage. We have previously demonstrated that the parasitism by the tachinid parasitoid , a pest of the silkworm, causes pupation defects in . However, the underlying mechanism is not fully understood. Here, we performed transcriptome analysis of the fat body of parasitized by . We identified 1361 differentially expressed genes, with 394 genes up-regulated and 967 genes down-regulated. The up-regulated genes were mainly associated with immune response, endocrine system and signal transduction, whereas the genes related to basal metabolism, including energy metabolism, transport and catabolism, lipid metabolism, amino acid metabolism and carbohydrate metabolism were down-regulated, indicating that the host appeared to be in poor nutritional status but active in immune response. Moreover, by time-course gene expression analysis we found that genes related to amino acid synthesis, protein degradation and lipid metabolism in at later parasitization stages were inhibited. Antimicrobial peptides including Cecropin A, Gloverin and Moricin, and an immulectin, CTL11, were induced. These results indicate that the tachinid parasitoid perturbs the basal metabolism and induces the energetically costly immunity of the host, and thus leading to incomplete larval-pupal ecdysis of the host. This study provided insights into how tachinid parasitoids modify host basal metabolism and immune response for the benefit of developing parasitoid larvae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506100PMC
http://dx.doi.org/10.3390/insects13090792DOI Listing

Publication Analysis

Top Keywords

basal metabolism
16
immune response
16
tachinid parasitoid
12
metabolism
9
parasitism tachinid
8
tachinid parasitoids
8
lipid metabolism
8
amino acid
8
host
6
genes
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!