When a print is coated with a transparent layer, such as a lamination film or a varnish layer, its color can be modified compared to the uncoated version due to multiple reflections between the layer-air interface and the inked substrate. These interreflections involve a multiple-convolution process between the halftone pattern and a ring-shaped luminous halo. They are described by an optical model which we have developed. The challenge at stake is to observe the impact of the coated layer on the print spectral reflectances and see if it can be predicted. The approach is based on pictures of the print captured with a multispectral microscope that are processed through the optical model to predict the spectral pictures of the coated print. The pictures averaged on the spatial dimension led to spectral reflectances which can be compared with macroscale measurements performed with a spectrophotometer. Comparison between macroscale measurements and microscale measurements with a multispectral microscope being delicate, specific care has been taken to calibrate the instruments. This method resulted in fairly conclusive predictions, both at the macroscale with the spectral reflectances, and at the microscale with an accurate prediction of the blurring effect induced by the multi-convolutive optical process. The tests carried out showed that the optical and visual effect of a coating layer on single-ink or multi-ink halftones with various patterns can be predicted with a satisfactory accuracy. Hence, by measuring the spatio-spectral reflectance of the uncoated print and predicting the spatio-spectral reflectance of the coating print, we can predict the color changes due to the coating itself. The model could be included in color management workflows for printing applications including a finishing coating.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504082 | PMC |
http://dx.doi.org/10.3390/jimaging8090243 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!