Gram-negative bacteria have a robust cell envelope that excludes or expels many antimicrobial agents. However, during infection, host soluble innate immune factors permeabilize the bacterial outer membrane. We identified two small molecules that exploit outer membrane damage to access the bacterial cell. In standard microbiological media, neither compound inhibited bacterial growth nor permeabilized bacterial outer membranes. In contrast, at micromolar concentrations, JAV1 and JAV2 enabled the killing of an intracellular human pathogen, Salmonella enterica serovar Typhimurium. Typhimurium is a Gram-negative bacterium that resides within phagosomes of cells from the monocyte lineage. Under broth conditions that destabilized the lipopolysaccharide layer, JAV2 permeabilized the bacterial inner membrane and was rapidly bactericidal. In contrast, JAV1 activity was more subtle: JAV1 increased membrane fluidity, altered reduction potential, and required more time than JAV2 to disrupt the inner membrane barrier and kill bacteria. Both compounds interacted with glycerophospholipids from Escherichia coli total lipid extract-based liposomes. JAV1 preferentially interacted with cardiolipin and partially relied on cardiolipin production for activity, whereas JAV2 generally interacted with lipids and had modest affinity for phosphatidylglycerol. In mammalian cells, neither compound significantly altered mitochondrial membrane potential at concentrations that killed Typhimurium. Instead, JAV1 and JAV2 became trapped within acidic compartments, including macrophage phagosomes. Both compounds improved survival of Typhimurium-infected Galleria mellonella larvae. Together, these data demonstrate that JAV1 and JAV2 disrupt bacterial inner membranes by distinct mechanisms and highlight how small, lipophilic, amine-substituted molecules can exploit host soluble innate immunity to facilitate the killing of intravesicular pathogens. Innovative strategies for developing new antimicrobials are needed. Combining our knowledge of host-pathogen interactions and relevant drug characteristics has the potential to reveal new approaches to treating infection. We identified two compounds with antibacterial activity specific to infection and with limited host cell toxicity. These compounds appeared to exploit host innate immunity to access the bacterium and differentially damage the bacterial inner membrane. Further, both compounds accumulated within Salmonella-containing and other acidic vesicles, a process known as lysosomal trapping, which protects the host and harms the pathogen. The compounds also increased host survival in an insect infection model. This work highlights the ability of host innate immunity to enable small molecules to act as antibiotics and demonstrates the feasibility of antimicrobial targeting of the inner membrane. Additionally, this study features the potential use of lysosomal trapping to enhance the activities of compounds against intravesicular pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601186PMC
http://dx.doi.org/10.1128/mbio.01790-22DOI Listing

Publication Analysis

Top Keywords

bacterial inner
16
inner membrane
16
small molecules
12
jav1 jav2
12
innate immunity
12
salmonella enterica
8
differentially damage
8
bacterial
8
damage bacterial
8
inner membranes
8

Similar Publications

Structural and functional analysis of the lipoprotein chaperone LolA.

Front Microbiol

December 2024

Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.

Lipoproteins are crucial for maintaining the structural integrity of bacterial membranes. In Gram-negative bacteria, the localization of lipoprotein (Lol) system facilitates the transport of these proteins from the inner membrane to the outer membrane. In , an ε-proteobacterium, lipoprotein transport differs significantly from the canonical and well-studied system in , particularly due to the absence of LolB and the use of a LolF homodimer instead of the LolCE heterodimer.

View Article and Find Full Text PDF

Background: Tuberculosis (TB) remains a major cause of infectious disease mortality globally, with significant underdiagnosis perpetuating transmission. Tongue swab analysis has emerged as a promising non-invasive method for pulmonary TB diagnosis. This study evaluates the diagnostic accuracy of the TB-EASY quantitative PCR (qPCR) assay using tongue swab specimens.

View Article and Find Full Text PDF

Functionalized Microsphere Platform Combining Nutrient Restriction and Combination Therapy to Combat Bacterial Infections.

ACS Appl Mater Interfaces

January 2025

Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.

The escalating prevalence of multidrug-resistant (MDR) bacterial infections has emerged as a critical global health crisis, undermining the efficacy of conventional antibiotic therapies. This pressing challenge necessitates the development of innovative strategies to combat MDR pathogens. Advances in multifunctional drug delivery systems offer promising solutions to reduce or eradicate MDR bacteria.

View Article and Find Full Text PDF

Characterization of glycogen-related glycoside hydrolase and from and their roles in biofilm formation and virulence.

Front Cell Infect Microbiol

January 2025

NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Glycogen is a polymer used by bacteria to store excess glucose, playing a crucial role in bacterial growth, stress resistance, biofilm formation, and virulence. In bacteria, the glycoside hydrolase family 13 protein are involved in the synthesis and metabolism of glycogen, respectively. The absence of these enzymes leads to changes in bacterial glycogen content, thereby affecting the growth metabolism of the strain.

View Article and Find Full Text PDF

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!