Sudden Infant Death Syndrome (SIDS) occurs unexpectedly in an otherwise healthy infant with no identifiable cause of death following a thorough investigation. A general hypervolemic state has been identified in SIDS, and fluid in the lungs suggests the involvement of pulmonary edema and hypoxia as the cause of death. The present perspective paper reviews pathophysiological, epidemiological, and dietary evidence in SIDS. A grounded theory is presented that proposes an association of SIDS with sodium toxicity from excessive sodium chloride intake, mediated by noncardiogenic pulmonary edema, hypoxia, and alveolar damage. The peak of SIDS cases occurs in infants 2-4 months of age, who are less efficient in excreting excessive dietary sodium load. Evidence implicating sodium toxicity in SIDS includes increased levels of sodium associated with fever and with inflammatory/immune responses in the lungs. Conditions in near-miss SIDS cases are linked to dysregulated sodium, and increased sodium dietary intake suggests that sodium toxicity from a high-salt diet potentially mediates the association of seasonality and socioeconomic status with SIDS incidence. In addition, exposure to sodium toxicity meets three main criteria of the triple risk model of SIDS. The proposed pathophysiological effects of pulmonary edema related to sodium toxicity in SIDS merit further investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497894 | PMC |
http://dx.doi.org/10.3390/diseases10030059 | DOI Listing |
Biol Res
January 2025
Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Human Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.
In most patients with type 1 xanthinuria caused by mutations in the xanthine dehydrogenase gene (XDH), no clinical complications, except for urinary stones, are observed. In contrast, all Xdh(- / -) mice die due to renal failure before reaching adulthood at 8 weeks of age. Hypoxanthine or xanthine levels become excessive and thus toxic in Xdh(- / -) mice because enhancing the activity of hypoxanthine phosphoribosyl transferase (HPRT), which is an enzyme that uses hypoxanthine as a substrate, slightly increases the life span of these mice.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China. Electronic address:
Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC.
View Article and Find Full Text PDFPharmaceutics
January 2025
Center for Pharmacy, University of Bergen, 5020 Bergen, Norway.
Polymyxin E (PME), a polymyxin antibiotic, serves as a final resort against antibiotic resistance. Nephrotoxicity is the primary concern when employing PME. To alleviate this issue, researchers have explored strategies including dosing adjustments and innovative formulations.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain.
Bioplastics are emerging as a promising solution to reduce pollution caused by petroleum-based plastics. Among them, polyhydroxyalkanoates (PHAs) stand out as viable biotechnological alternatives, though their commercialization is limited by expensive downstream processes. Traditional PHA extraction methods often involve toxic solvents and high energy consumption, underscoring the need for more sustainable approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!