Recent publications describe the development of in vitro models of human development, for which applications in developmental toxicity testing can be envisaged. To date, these regulatory assessments have exclusively been performed in animal studies, the relevance of which to adverse reactions in humans may be questioned. Recently developed cell culture-based models of embryo-fetal development, however, do not yet exhibit sufficient levels of standardisation and reproducibility. Here, the advantages and shortcomings of both in vivo and in vitro developmental toxicity testing are addressed, as well as the possibility of integrated testing strategies as a viable option in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.200933DOI Listing

Publication Analysis

Top Keywords

developmental toxicity
12
toxicity testing
12
vitro models
8
models human
8
human development
8
development
4
development potential
4
potential application
4
application developmental
4
testing
4

Similar Publications

Background: Exposure to environmental chemicals such as lead (Pb) during vulnerable developmental periods and even in adult stage can result in adverse health outcomes later in life. Human cohort studies have demonstrated associations between Pb exposure and Alzheimer's Disease (AD) onset in later life which were further corroborated by findings from animal studies. The molecular pathway linking Pb exposure and increased AD risk, however, remains elusive.

View Article and Find Full Text PDF

The cellular concentrations of splicing factors (SFs) are critical for controlling alternative splicing. Most serine and arginine-enriched (SR) protein SFs regulate their own concentration via a homeostatic feedback mechanism that involves regulation of inclusion of non-coding 'poison exons' (PEs) that target transcripts for nonsense-mediated decay. The importance of SR protein PE splicing during animal development is largely unknown despite PE ultra-conservation across animal genomes.

View Article and Find Full Text PDF

Developmental toxicity (DevTox) tests evaluate the adverse effects of chemical exposures on an organism's development. Although current testing primarily relies on large mammalian models, the emergence of new approach methodologies (NAMs) is encouraging industries and regulatory agencies to evaluate novel assays. C.

View Article and Find Full Text PDF

Collagens are biofunctional proteins that have been widely used in many fields, including biomedical, cosmetics, and skin care for their value in maintaining the integrity of cellular membranes. Collagens are also commonly consumed in foods and provide a source of protein and amino acids. As part of the safety assessment for this particular recombinant humanized type III (RHTypeIII) collagen produced by Komagataella phaffii SMD1168-2COL3, a series of toxicological tests were conducted.

View Article and Find Full Text PDF

A theoretical study on the environmental oxidation of fenpyrazamine fungicide initiated by hydroxyl radicals in the aqueous phase.

Environ Sci Process Impacts

January 2025

Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France.

Fenpyrazamine (FPA) is a widely used fungicide in agriculture to control fungal diseases, but its environmental degradation by oxidants and the formation of potential degradation products remain unexplored. This study investigates the oxidation of FPA by hydroxyl radicals (HO˙) using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three standard oxidation mechanisms, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET), were evaluated in the aqueous phase, with reaction kinetics analyzed over a temperature range of 283-333 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!