Zinc dialkyldithiophosphate (ZDDP), the most widely used antiwear additive in engine oils, has been extensively studied over the last few decades to help understand the origin of its effectiveness. Glassy phosphate-based tribofilms, approximately 100 nm thick, are often formed on surfaces sliding in ZDDP-containing oils, which help to prevent or reduce wear. Recent studies reveal that a combination of applied shear and compressive stresses drive mechanochemical reactions that promote tribofilm growth, and that growth is further accelerated by increased temperature. While recent work has shown that compressive stress alone is insufficient to form tribofilms, the individual effects of the shear stress and compressive stress are not fully understood. Here, shear and compressive stresses are studied separately by using different ratios of high-viscosity, high-traction fluids for testing. This allows the areal mean compressive and shear stresses in the fluid when confined at a loaded sliding interface, to be independently controlled while driving tribofilm growth, which is a system we refer to as a stress-controlled mechanochemical reactor. Tribofilms derived from a secondary ZDDP were generated using a tungsten carbide/tungsten carbide ball-on-disk contact in the full elastohydrodynamic lubrication (EHL) regime using a mini-traction machine (MTM), meaning that solid-solid contact is avoided. The MTM was equipped with a spacer layer imaging (SLIM) capability, permitting measurement of the tribofilm thickness during its growth. The well-separated sliding surfaces generated by the high-viscosity fluids confirm that solid-solid contact is not required for tribofilm formation. Under these full fluid film EHL conditions, shear stress and temperature promote tribofilm growth in accordance with stress-augmented thermal activation. In contrast, under constant shear stress and temperature, compressive stress has the opposite effect, inhibiting tribofilm growth. Using the extended Eyring model for shear- and hydrostatic pressure-affected reaction kinetics, an activation energy of 0.54 ± 0.04 eV is found, consistent with prior studies of ZDDPs. The activation volume for shear stress is found to be 0.18 ± 0.06 nm, while that for the compressive stress component is much smaller, at 0.010 ± 0.004 nm. This not only confirms prior work supporting that shear stress drives tribofilm growth, but demonstrates and quantifies how compressive stress inhibits growth, consistent with the rate-limiting step in tribofilm growth involving a bond-breaking reaction. Implications of these findings are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2fd00123c | DOI Listing |
J Phys Chem C Nanomater Interfaces
September 2024
Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, U.K.
Phosphate esters decompose on metal surfaces and form protective polyphosphate films. For many applications, such as in lubricants for electric vehicles and wind turbines, an understanding of the effect of electric fields on molecular decomposition is urgently required. Experimental investigations have yielded contradictory results, with some suggesting that electric fields improve tribological performance, while others have reported the opposite effect.
View Article and Find Full Text PDFLangmuir
February 2024
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Zinc dialkyl dithiophosphate (ZDDP) is a key antiwear additive in lubricants that forms robust phosphate glass-based tribofilms to mitigate wear on rubbing surfaces. The quest to unravel the enigma of these antiwear film formations on sliding surfaces has persisted as an enduring mystery, despite nearly a century of fervent research. This paper presents a comprehensive review of nanotribological investigations, centering on the tribochemical decomposition of ZDDP antiwear additives.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2023
Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK.
The growth of protective tribofilms from lubricant antiwear additives on rubbing surfaces is initiated by mechanochemically promoted dissociation reactions. These processes are not well understood at the molecular scale for many important additives, such as tricresyl phosphate (TCP). One aspect that needs further clarification is the extent to which the surface properties affect the mechanochemical decomposition.
View Article and Find Full Text PDFNanomicro Lett
October 2023
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, People's Republic of China.
The practical application of Li metal anodes (LMAs) is limited by uncontrolled dendrite growth and side reactions. Herein, we propose a new friction-induced strategy to produce high-performance thin Li anode (Li@CFO). By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling, a robust organic/inorganic hybrid interlayer (lithiophilic LiF/LiC framework hybridized -CF-O-CF- chains) was formed atop Li metal.
View Article and Find Full Text PDFFaraday Discuss
January 2023
Department of Mechanical Engineering & Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Zinc dialkyldithiophosphate (ZDDP), the most widely used antiwear additive in engine oils, has been extensively studied over the last few decades to help understand the origin of its effectiveness. Glassy phosphate-based tribofilms, approximately 100 nm thick, are often formed on surfaces sliding in ZDDP-containing oils, which help to prevent or reduce wear. Recent studies reveal that a combination of applied shear and compressive stresses drive mechanochemical reactions that promote tribofilm growth, and that growth is further accelerated by increased temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!