Endothelial mitochondria play a pivotal role in maintaining endothelial cell (EC) homeostasis through constantly altering their size, shape, and intracellular localization. Studies show that the disruption of the basal mitochondrial network in EC, forming excess fragmented mitochondria, implicates cardiovascular disease. However, cellular consequences underlying the morphological changes in the endothelial mitochondria under distinctively different, but physiologically occurring, flow patterns (i.e., unidirectional flow [UF] versus disturbed flow [DF]) are largely unknown. The purpose of this study was to investigate the effect of different flow patterns on mitochondrial morphology and its implications in EC phenotypes. We show that mitochondrial fragmentation is increased at DF-exposed vessel regions, where elongated mitochondria are predominant in the endothelium of UF-exposed regions. DF increased dynamin-related protein 1 (Drp1), mitochondrial reactive oxygen species (mtROS), hypoxia-inducible factor 1, glycolysis, and EC activation. Inhibition of Drp1 significantly attenuated these phenotypes. Carotid artery ligation and microfluidics experiments further validate that the significant induction of mitochondrial fragmentation was associated with EC activation in a Drp1-dependent manner. Contrarily, UF in vitro or voluntary exercise in vivo significantly decreased mitochondrial fragmentation and enhanced fatty acid uptake and OXPHOS. Our data suggest that flow patterns profoundly change mitochondrial fusion/fission events, and this change contributes to the determination of proinflammatory and metabolic states of ECs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9514384 | PMC |
http://dx.doi.org/10.1172/jci.insight.159286 | DOI Listing |
J Med Ultrason (2001)
December 2024
Department of Internal Medicine, Kuma Hospital, Kobe, Hyogo, 650-0011, Japan.
Purpose: Parathyroid lipoadenomas are difficult to recognize preoperatively; hence, they may remain undetected. Difficulty in recognition is thought to be due to the adipocytes present in the tumor. This study aimed to clarify the impact of adipocytes as a component of parathyroid adenomas on ultrasound evaluation.
View Article and Find Full Text PDFJ Int Med Res
December 2024
Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan.
Objective: Breastfeeding is associated with improved health outcomes in infancy and throughout adulthood as breast milk encompasses diverse immune-active factors that affect the ontogeny of the immune system in breastfed (BF) infants. Nevertheless, the impact of infant feeding on the immune system is poorly understood, and a comprehensive understanding of immune system development in human infants is lacking. In this observational study, we addressed the effects of different infant feeding approaches on cell populations and parameters in the peripheral blood of infants to gain insight into the innate and adaptive arms of the immune system.
View Article and Find Full Text PDFSci Rep
December 2024
The Ministry of Education Key Laboratory of High Efficiency Mining and Safety for Metal Mines & School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
Coarse particles in filling slurry are the primary factor causing wear in filling elbow pipes, and the wear mechanism of these particles on the pipes is influenced by various factors. To study the erosion and wear mechanism of elbow pipes caused by coarse particles, the motion state of coarse particles under different curvature radii, coarse particle gradations, and pipe diameters was investigated using a simulation method based on the coupling of Fluent and EDEM software, grounded in theories of fluid mechanics, rheology, and solid-liquid two-phase flow. The study explored the impact patterns and locations of wear induced by coarse particles on filling elbow pipes.
View Article and Find Full Text PDFSci Rep
December 2024
Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
The development of management strategies for the promotion of sustainable fisheries relies on a deep knowledge of ecological and evolutionary processes driving the diversification and genetic variation of marine organisms. Sustainability strategies are especially relevant for marine species such as the European sardine (Sardina pilchardus), a small pelagic fish with high ecological and socioeconomic importance, especially in Southern Europe, whose stock has declined since 2006, possibly due to environmental factors. Here, we generated sequences for 139 mitochondrial genomes from individuals from 19 different geographical locations across most of the species distribution range, which was used to assess genetic diversity, diversification history and genomic signatures of selection.
View Article and Find Full Text PDFSci Rep
December 2024
Norwegian Institute for Nature Research, Postbox 5685, 7485, Trondheim, Norway.
The Atlantic salmon (Salmo salar) is an iconic species of significant ecological and economic importance. Their downstream migration as smolts represents a critical life-history stage that exposes them to numerous challenges, including passage through hydropower plants. Understanding and predicting fine-scale movement patterns of smolts near hydropower plants is therefore essential for adaptive and effective management and conservation of this species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!