A chitosan-derived metal-free N-doped carbon catalyst was synthesized and investigated for selective reductive formylation of quinoline to N-formyl-tetrahydroquinoline and nitroarenes to N-formyl anilides via aqueous formic acid (FA)-mediated catalytic transformation. FA dissociated on the catalyst surface and acted as a hydrogenating and formylating source for selective N-formylation of N-heteroarenes. The carbonized catalyst prepared at 700 °C offered the best activity. A 92 % yield of N-formyl-tetrahydroquinoline after 14 h and >99 % yield for N-formyl anilide after 12 h at 160 °C were obtained. The excellent catalytic activity was correlated with the type of "N" species and the basicity of the catalyst. Density functional theory calculations revealed that a water-assisted FA decomposition pathway (deprotonation and dehydroxylation) generated the surface adsorbed -H and -HCOO species, required for the formation of N-formylated products. In addition, the selective formation of N-formyl-tetrahydroquinoline and N-formyl anilides was explained by a comprehensive reaction energetics analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202201560DOI Listing

Publication Analysis

Top Keywords

metal-free n-doped
8
n-doped carbon
8
carbon catalyst
8
aqueous formic
8
selective reductive
8
reductive formylation
8
formylation quinoline
8
n-formyl anilides
8
catalyst
5
catalyst derived
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!