TiSnO nanoparticles (∼5 nm and ∼10 nm) have been studied under high pressure by Raman spectroscopy. For particles with diameter ∼10 nm, a transformation has been observed at 20-25 GPa while for particles with ∼5 nm diameter no phase transition has been observed up to ∼30 GPa. The TiSnO solid solution shows an extended stability at the nanoscale, both of its cationic and anionic sublattices. This ultrastability originates from the contribution of Ti and Sn mixing: Sn stabilizes the cationic network at high pressure and Ti ensures a coupling between the cationic and anionic sublattices. This result questions a "traditional" crystallographic description based on polyhedra packing and this synergistic effect reported in this work is similar to the case of metamaterials but at the nanoscale.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr03441gDOI Listing

Publication Analysis

Top Keywords

tisno nanoparticles
8
high pressure
8
cationic anionic
8
anionic sublattices
8
extreme structural
4
structural stability
4
stability tisno
4
nanoparticles synergistic
4
cationic
4
synergistic cationic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!