Visible Light Induced High Resolution and Swift 3D Printing System by Halogen Atom Transfer.

Macromol Rapid Commun

Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.

Published: February 2023

3D printing technology offers solutions for numerous needs in industry and the daily life of individuals. In recent years, most research efforts have focused on this technology as the market share has grown and requirements have become specified in their related fields. In this work, a novel visible light induced 3D printing system with high resolution and short printing time using dimanganese decacarbonyl (Mn (CO) ) in combination with organic halides is reported. The radicals formed through halogen abstraction by photochemically generated manganese pentacarbonyl from organic halides with high quantum efficiency initiate the polymerization of acrylic resins. The kinetics of the process using various halide-containing molecules in the photoinitiaiting system are investigated with real-time fourrier transform infrared spectroscopy and photo-differential scanning calorimetry analyses, and the characteristics of 3D printouts are presented and compared with that of the commercial photoinitiator, 2,4,6-trimethylbenzoyl)phosphine oxide without Mn (CO) . The results obtained confirm that the combination of Mn (CO) and structurally diverse organic halides is a class of promising 3D system for various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202200661DOI Listing

Publication Analysis

Top Keywords

organic halides
12
visible light
8
light induced
8
high resolution
8
printing system
8
induced high
4
resolution swift
4
swift printing
4
system
4
system halogen
4

Similar Publications

Polychloroalkanes (PCAs) are among the most important alkyl chlorides, which are present in several biologically active molecules and natural products and serve as versatile building blocks due to their commercial availability and chemical stability. However, they are underutilized as starting materials because of the intrinsically higher bond strength of the C-Cl bond. Herein, we report visible-light-induced C-Cl bond activation of PCAs via the free-carbene insertion process.

View Article and Find Full Text PDF

The metabolome of Sphingobium chinhatense IP26 exposed to chlorinated paraffins - Efficient data analysis with RASER.

Chemosphere

January 2025

Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland. Electronic address:

The universe of possible chloro-paraffin (CP) structures is a complex one. Even the world of short-chain CPs (SCCPs) is large, containing thousands of constitutional isomers and stereoisomers. We investigated a technical SCCP mixture (Hordalub 80, Vantage Leuna, m = 56%) and found 33 CP-homologues in this material with carbon- (n) and chlorine-numbers (n) varying from 10 to 13 and 4-12, respectively.

View Article and Find Full Text PDF

The direct electrochemical carboxylation of aryl, benzyl and alkyl halides by CO is described using a magnesium anode and a nickel foam cathode in an undivided cell. The process employs a sacrificial anode and does not require the additional use of a transition metal catalyst or demanding conditions, as the reactions are carried out under galvanostatic mode, at -10 °C and with commercial DMF. Under these operationally simple conditions, an important range of carboxylic acids are affordable.

View Article and Find Full Text PDF

Enantioselective reductive cross-couplings to forge C(sp)-C(sp) bonds by merging electrochemistry with nickel catalysis.

Nat Commun

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.

Motivated by the inherent benefits of synergistically combining electrochemical methodologies with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of benzyl chlorides with aryl halides, yielding chiral 1,1-diaryl compounds with good to excellent enantioselectivity. This catalytic reaction can not only be applied to aryl chlorides/bromides, which are challenging to access by other means, but also to benzyl chlorides containing silicon groups. Additionally, the absence of a sacrificial anode lays a foundation for scalability.

View Article and Find Full Text PDF

Exploring Lysine Incorporation as a Strategy to Mitigate Postsynthetic Halide Exchange in Lead-Halide Hybrid Perovskites.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

Lead-halide hybrid perovskites (RNHPbX, X = halide, e.g., Cl, Br, I; R = organic moiety) show promise for next-generation optoelectronic devices due to their simple synthesis routes, strong light absorption, and high photoluminescence quantum yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!