Recent studies suggest that transcranial electrical stimulation (tES) can be performed during functional magnetic resonance imaging (fMRI). The novel approach of using concurrent tES-fMRI to modulate and measure targeted brain activity/connectivity may provide unique insights into the causal interactions between the brain neural responses and psychiatric/neurologic signs and symptoms, and importantly, guide the development of new treatments. However, tES stimulation parameters to optimally influence the underlying brain activity may vary with respect to phase difference, frequency, intensity, and electrode's montage among individuals. Here, we propose a protocol for closed-loop tES-fMRI to optimize the frequency and phase difference of alternating current stimulation (tACS) for two nodes (frontal and parietal regions) in individual participants. We carefully considered the challenges in an online optimization of tES parameters with concurrent fMRI, specifically in its safety, artifact in fMRI image quality, online evaluation of the tES effect, and parameter optimization method, and we designed the protocol to run an effective study to enhance frontoparietal connectivity and working memory performance with the optimized tACS using closed-loop tES-fMRI. We provide technical details of the protocol, including electrode types, electrolytes, electrode montages, concurrent tES-fMRI hardware, online fMRI processing pipelines, and the optimization algorithm. We confirmed the implementation of this protocol worked successfully with a pilot experiment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575607 | PMC |
http://dx.doi.org/10.1002/brb3.2667 | DOI Listing |
Sci Bull (Beijing)
December 2024
CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Transcranial electrical stimulation (tES) is a non-invasive technique widely used in modulating brain activity and behavior, but its effects differ across individuals and are influenced by head anatomy. In this study, we investigated how the electric field (EF) generated by high-definition tES varies across the lifespan among different demographic groups and its relationship with neural responses measured by functional magnetic resonance imaging (fMRI). We employed an MRI-guided finite element method to simulate the EF for the two most common tES montages (i.
View Article and Find Full Text PDFBrain Behav
October 2022
Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.
Recent studies suggest that transcranial electrical stimulation (tES) can be performed during functional magnetic resonance imaging (fMRI). The novel approach of using concurrent tES-fMRI to modulate and measure targeted brain activity/connectivity may provide unique insights into the causal interactions between the brain neural responses and psychiatric/neurologic signs and symptoms, and importantly, guide the development of new treatments. However, tES stimulation parameters to optimally influence the underlying brain activity may vary with respect to phase difference, frequency, intensity, and electrode's montage among individuals.
View Article and Find Full Text PDFNat Protoc
March 2022
Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA.
Low-intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation, applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional MRI (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!