Similar Publications

Superstrong Lightweight Aerogel with Supercontinuous Layer by Surface Reaction.

Adv Mater

January 2025

Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, National Synchrotron Radiation Laboratory, Center for Micro and Nanoscale Research and Fabrication, Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230026, P. R. China.

Breaking the thermal, mechanical and lightweight performance limit of aerogels has pivotal significance on thermal protection, new energy utilization, high-temperature catalysis, structural engineering, and physics, but is severely limited by the serious discrete characteristics between grain boundary and nano-units interfaces. Herein, a thermodynamically driven surface reaction and confined crystallization process is reported to synthesize a centimeter-scale supercontinuous ZrO nanolayer on ZrO-SiO fiber aerogel surface, which significantly improved its thermal and mechanical properties with density almost unchanged (≈26 mg cm). Systematic structure analysis confirms that the supercontinuous layer achieves a close connection between grains and fibers through Zr─O─Si bonds.

View Article and Find Full Text PDF

Evaluation of the Thermal Insulation Properties of Composites with ZrO/Al Coatings Intended for the Construction of Protective Gloves.

Materials (Basel)

January 2025

Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego Street, 90-537 Lodz, Poland.

The article presents research on the evaluation of the use of two four-layer textile composites with ZrO/Al coatings of different thicknesses (deposited by magnetron sputtering PVD) with potential use in thermally insulating protective gloves designed for steelworkers, welders, or miners. The structure of the composites was analyzed using high-resolution X-ray micro-CT. The assessment of the safety of the glove user was conducted using methods in which the composites were exposed to contact heat, radiant heat, and flame heat.

View Article and Find Full Text PDF

Defects Calculation and Accelerated Interfacial Charge Transfer in a Photoactive MOF-Based Heterojunction.

Small

January 2025

Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.

Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

Background/purpose: High gold (Au) alloys have many advantages, such as good mechanical properties and stable chemical properties for dental restoration. The purpose of this investigation was to investigate the effect of zirconia (ZrO)-magnesia (MgO)-based investment combined with an argon arc vacuum pressure (Ar-arc VP) casting process on the recasting of high Au alloys.

Materials And Methods: The recasting Au alloys were compared between the control group of conventional SiO-based investment/horizontal centrifugal (HC) casting and the experimental group of ZrO-MgO-based investment/Ar-arc VP die casting.

View Article and Find Full Text PDF

Amorphous/Crystalline ZrO with Oxygen Vacancies Anchored Nano-Ru Enhance Reverse Hydrogen Spillover in Alkaline Hydrogen Evolution.

Small

January 2025

State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.

Article Synopsis
  • A hydrogen spillover-based binary (HSBB) system is gaining attention for improving alkaline hydrogen evolution reactions (HER) by enhancing the spillover process.
  • The innovation involves anchoring nano-Ru onto oxygen vacancy-rich amorphous/crystal ZrO, which helps water molecules break down into protons that generate hydrogen.
  • The unique structure increases hydrogen adsorption/desorption rates, reduces work function for better electron transfer, and results in impressive performance metrics, outperforming commercial Pt/C catalysts.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!