Previously, freshwater yields of the solar still were quantified only based on the actual distillate recovery, not considering condensate losses by any means. Likewise, solar-to-vapor conversion efficiencies of the solar still were conventionally considered and evaluated as one-off -rigid values- based on the latent heat of the average water temperature. In most cases, these approaches do not give a comprehensive performance details of the solar still. Thus, we suggest two considerations for effective performance evaluation of the inclined solar still. The first consideration is theoretical estimation of the condensate loss due to the condensate collection channel slope, while the other is the use of a transient method to evaluate the solar-to-vapor conversion efficiency. We demonstrated, geometrically, that the condensate loss on the inclined solar still can be significant-hence the need to consider it alongside the overall yield. We formulated a model to estimate the condensate loss and validated the model by comparing an estimated condensate loss with experimental loss. Similarly, we demonstrated a transient approach to evaluate the solar-to-vapor conversion efficiency by using the latent heat of the hourly water temperature. Accordingly, the optimum hourly efficiency of the investigated solar still prototype was 161.4%, with a daily average of 113.4% versus 108.4% from the conventional method. Overall, no study on the solar still had previously accounted for condensate losses by any means whatsoever, making our current study a reference and a pioneer in this concept and suggesting an advancement in the approach to report the performance productivity of the solar still.•Condensate loss on the inclined solar still due condensate collection channel slope was estimated geometrically and demonstrated to be significant.•Solar-to-vapor conversion efficiency was evaluated using an hourly transient approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483800PMC
http://dx.doi.org/10.1016/j.mex.2022.101837DOI Listing

Publication Analysis

Top Keywords

condensate loss
20
solar-to-vapor conversion
16
conversion efficiency
16
inclined solar
16
solar
10
condensate
9
effective performance
8
performance evaluation
8
evaluation inclined
8
condensate losses
8

Similar Publications

Organisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by 11-residue motifs, plays a crucial role in the desiccation tolerance of numerous species.

View Article and Find Full Text PDF

Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism.

View Article and Find Full Text PDF

Protein -glycosylation, as one of the most crucial post-translational modifications, plays a significant role in various biological processes. The structural alterations of -glycans are closely associated with the onset and progression of numerous diseases. Therefore, the precise and specific identification of disease-related -glycans in complex biological samples is invaluable for understanding their involvement in physiological and pathological processes, as well as for discovering clinical diagnostic biomarkers.

View Article and Find Full Text PDF

Arginase plays a crucial role in the urea cycle; it also has immunosuppressive and pro-tumor effects. The present study aimed to assess the effects of arginase inhibition by thymoquinone (2-Isopropyl-5-methyl-1,4-benzoquinone), an active compound of Nigella sativa, on cell death in the MDA-MB-231 triple-negative breast tumor cell line. Cell viability assays, Western blot analysis, and flow cytometry analysis were used to characterize oxidative stress and cell death.

View Article and Find Full Text PDF

Analytical Quality Evaluation of the Tox21 Compound Library.

Chem Res Toxicol

January 2025

Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States.

The analytical quality of compounds subjected to high-throughput screening (HTS) impacts accurate interpretation of assay results, with poor quality samples potentially leading to false negatives or positives. The Tox21 "10K" library consists of over 8900 unique compounds, spanning a diverse landscape of environmental and pharmaceutical chemicals, posing opportunities and challenges for analytical quality control (QC) determinations. Tox21 sample plates stored in DMSO at ambient conditions for 0 (T0) and/or 4 months (T4), totaling more than 13K unique sample identifiers (Tox21 IDs), were subjected to various analyses, including liquid and gas chromatography mass spectrometry (LC-MS, GC-MS) and nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!