Pyrroloquinoline quinone (PQQ), present in breast milk and various foods, is highly recommended as an antioxidant, anti-inflammatory agent, and a cofactor in redox reactions in several biomedical fields. Moreover, PQQ has neuroprotective effects on nervous system disorders and immunosuppressive effects on different diseases. Herein, we report on the optimum fabrication of electrospun CS/PVA coaxial, core/shell, and uniaxial nanofibers. The morphological, elemental, and chemical structure of the fabricated nanofibers were investigated and discussed. PQQ, as a drug, was loaded on the uniaxial nanofibers and in the core of the coaxial nanofibers and the sustained and controlled release of PQQ was compared and discussed. The results revealed the privilege of the coaxial over the uniaxial nanofibers in the sustained release and reduction of the initial burst of PQQ. Remarkably, the results revealed a higher degree of swelling for CS/PVA hollow nanofibers compared to that of the uniaxial and the coaxial nanofibers. The coaxial nanofibers showed a lower release rate than the uniaxial nanofibers. Moreover, the CS/PVA coaxial nanofibers loaded with PQQ were found to enhance cell viability and proliferation. Therefore, the CS/PVA coaxial nanofibers loaded with PQQ assembly is considered a superior drug delivery system for PQQ release.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417322 | PMC |
http://dx.doi.org/10.1039/d0na00311e | DOI Listing |
Int J Biol Macromol
January 2025
MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:
Dressings are prone to adhering to new tissues, leading to secondary harm to the wound during dressing replacement. To address this issue, many strategies have been proposed to endow dressings with anti-adhesive functions. However, the introduction of exogenous agents or stimuli is always needed, and difficulty in achieving adaptive removal is also present.
View Article and Find Full Text PDFBiomater Adv
January 2025
Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France. Electronic address:
Abdominal hernia repair is a common surgical procedure, involving in most cases the use of textile meshes providing a mechanical barrier to consolidate the damaged surrounding tissues and prevent the resurgence of the hernia. However, in more than half cases postoperative complications such as adhesions and infections occur at the surface of the mesh, leading to chronic pain for the patient and requiring the removal of the implant. One of the most promising strategies to reduce the risk of postoperative adhesions and infections is to add a physical barrier between the mesh and the abdominal walls.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Petroleum and Gas Engineering Southwest Petroleum University, Chengdu, 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, 610500, PR China. Electronic address:
Adjusting the structure of the membrane and improving its performance proved to be an effective technique for accomplishing efficient dye wastewater purification. Water erosion of polyvinylpyrrolidone (PVP) core in polyacrylonitrile (PAN) nanofiber membrane modified with UiO-66-NH was successfully achieved, in this study, using coaxial electrospinning, and ZIF-8 with excellent performance was further epitaxy-grown in situ. Two differently shaped and positively charged MOFs confer strong adsorption capacity (adsorption capacity >2042 mg/g) on cationic dyes.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China. Electronic address:
Understanding of the structure and interfacial merits that reactive metal-organic frameworks (MOFs) undergo is critical for constructing efficient catalysts for non-thermal plasma-assisted conversion of greenhouse gases. Herein, we proposed a free-standing bimetallic (Co/Ni) MOFs supported on bacterial cellulose (BC) foams (Co/Ni-MOF@BC) toward the coaxial dielectric barrier discharge (DBD) plasma-catalytic system, of which the Co/Ni ions coordination demonstrated an intriguing textual uplifting of the malleable BC nanofiber network with abundant pores up to micrometer-scale, which could impart a more intensive predominant filamentary microdischarge current to 180 mA with stronger plasma-catalytic interaction. Remarkably, compared to the monometallic MOF@BC foams, this bimetallic Co/Ni-MOF@BC also delivered a substantially improved alkaline absorption ability as further confirmed by the CO- temperature-programmed desorption (TPD) result.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
In this study, a transient viscosity adjustment method using a coaxial nozzle was explored to fabricate nanofibers from non-spinnable -poly(hydroxyamide) (-PHA). Unlike conventional electrospinning methods that often require additives to induce fiber formation, this approach relies on a sheath-core configuration, introducing tetrahydrofuran (THF) to the sheath to temporarily adjust solution viscosity. The diffusion of THF into the core -PHA solution resulted in momentary solidification at the interface, promoting nanofiber formation without compromising polymer solubility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!