Memristive devices are widely recognized as promising hardware implementations of neuromorphic computing. Herein, a flexible and transparent memristive synapse based on polyvinylpyrrolidone (PVP)/N-doped carbon quantum dot (NCQD) nanocomposites through regulating the NCQD doping concentration is reported. Kelvin probe force microscopy showed that the trapping/detrapping of space charge can account for the memristive mechanism of the device. Diverse synaptic functions, including excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), spike-timing-dependent plasticity (STDP), and the transition from short-term plasticity (STP) to long-term plasticity (LTP), are emulated, enabling the PVP-NCQD hybrid system to be a valuable candidate for the design of novel artificial neural architectures. In addition, the synaptic device showed excellent flexibility against mechanical strain after repeated bending tests. This work provides a new approach to develop flexible and transparent organic artificial synapses for future wearable neuromorphic computing systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419774 | PMC |
http://dx.doi.org/10.1039/d1na00152c | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.
High-performance flexible pressure sensors are crucial for applications such as wearable electronics, interactive systems, and healthcare technologies. Among these, iontronic pressure sensors have garnered particular attention due to their superior sensitivity, enabled by the giant capacitance variation of the electric double layer (EDL) at the ionic-electronic interface under deformation. Key advancements, such as incorporating microstructures into ionic layers and employing diverse materials, have significantly improved sensor properties like sensitivity, accuracy, stability, and response time.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Electronics Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
Numerous studies have focused on graphene owing to its potential as a next-generation electronic material, considering its high conductivity, transparency, superior mechanical stiffness, and flexibility. However, cost-effective mass production of graphene-based electronics based on existing fabrication methods, such as graphene transfer and metal formation, remains a challenge. This study proposes a simple and efficient method for creating electrical contacts with graphene.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China.
Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA.
As global temperatures rise, heat-related chronic health disorders are predicted to become more prevalent. We tested whether a single exposure to acute heat illness, using a preclinical mouse model of exertional heat stroke (EHS), can induce late-emerging health disorders that progress into chronic disease. Following EHS, mice were followed for 3 months; after two weeks of recovery, half were placed on a Western diet to determine if previous EHS exposure amplifies the negative consequences of an atherogenic diet.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
The growing advancement of wearable technologies and sophisticated sensors has driven the need for environmentally friendly and reliable energy sources with robust mechanical stability. Flexible organic solar cells (OSCs) have become promising substitutes for traditional energy solutions thanks to their remarkable mechanical flexibility and high power conversion efficiency (PCE). These unique properties allow flexible OSCs to seamlessly integrate with diverse devices and substrates, making them an excellent choice for powering various electronic devices by efficiently harvesting solar energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!