The integration of transition metal dichalcogenide (TMDC) layers on nanostructures has attracted growing attention as a means to improve the physical properties of the ultrathin TMDC materials. In this work, the influence of SiO nanopillars (NPs) with a height of 50 nm on the optical characteristics of MoS layers is investigated. Using a metal organic chemical vapor deposition technique, a few layers of MoS were conformally grown on the NP-patterned SiO/Si substrates without notable strain. The photoluminescence and Raman intensities of the MoS layers on the SiO NPs were larger than those observed from a flat SiO surface. For 100 nm-SiO/Si wafers, the 50 nm-NP patterning enabled improved absorption in the MoS layers over the whole visible wavelength range. Optical simulations showed that a strong electric-field could be formed at the NP surface, which led to the enhanced absorption in the MoS layers. These results suggest a versatile strategy to realize high-efficiency TMDC-based optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419769 | PMC |
http://dx.doi.org/10.1039/d0na00905a | DOI Listing |
Small
January 2025
Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China.
The etch-engineering is a feasible avenue to tailor the layer number and morphology of 2D layered materials during the chemical vapor deposition (CVD) growth. However, less reports strengthen the etch-engineering used in the fabrication of high-quality transition metal dichalcogenide (TMD) materials with tunable layers and desirable morphologies to improve their prominent performance in electronic and optoelectronic devices. Here, an etching-and-growth coexistence method is reported to directly synthesize high-quality, high-symmetric MoS bilayers with versatile morphologies via CVD.
View Article and Find Full Text PDFScience
January 2025
Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, China.
One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction.
View Article and Find Full Text PDFACS Nano
January 2025
BK21 Graduate Program in Intelligent Semiconductor Technology, Seoul 03722, Republic of Korea.
MoS, one of the most researched two-dimensional semiconductor materials, has great potential as the channel material in dynamic random-access memory (DRAM) due to the low leakage current inherited from the atomically thin thickness, high band gap, and heavy effective mass. In this work, we fabricate one-transistor-one-capacitor (1T1C) DRAM using chemical vapor deposition (CVD)-grown monolayer (ML) MoS in large area and confirm the ultralow leakage current of approximately 10 A/μm, significantly lower than the previous report (10 A/μm) in two-transistor-zero-capacitor (2T0C) DRAM based on a few-layer MoS flake. Through rigorous analysis of leakage current considering thermionic emission, tunneling at the source/drain, Shockley-Read-Hall recombination, and trap-assisted tunneling (TAT) current, the TAT current is identified as the primary source of leakage current.
View Article and Find Full Text PDFSmall
January 2025
Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.
View Article and Find Full Text PDFSci Rep
January 2025
Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi'an, 710071, China.
(AlO)(HfO) films with varying compositions were deposited on silicon substrates via plasma-enhanced atomic layer deposition (PEALD), and metal-oxide-semiconductor (MOS) capacitors were fabricated. The impact of varying induced Al content on the dielectric properties of HfO was examined through electrical measurements. The results showed that increasing Al content raised the flat-band voltage, reduced the interface state density (D), and significantly lowered the leakage current at a given voltage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!