Herein, we report a facile method for the synthesis of platinum nanoparticles (PtNPs) about 2.25 nm in size by heating a solution of chloroplatinic acid and sodium rhodizonate. The PtNPs were synthesized in about 5 min. The PtNPs were supported on macroporous cellulose fibers that were obtained from Kimwipe paper (KWP). The cellulose fiber-supported PtNPs (PtNPs@KWP) exhibited excellent catalytic activity towards the reduction of organic pollutants [ methyl orange (MO)] in the presence of hydrogen (H) gas and formic acid (FA). FA and H gas were utilized as clean and alternative reducing agents. The reduction of MO was performed in two different types of water matrices deionized water (DIW) and simulated fresh drinking water (FDW). In both water matrices, the FA mediated reduction of MO was found to be faster than the H gas-bubbled one. The PtNPs@KWP demonstrated excellent cycling stability without leaching the PtNPs or platinum ions into the solution for at least five cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419556 | PMC |
http://dx.doi.org/10.1039/c9na00124g | DOI Listing |
Ann Med
December 2025
Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
Cisplatin is a platinum-based drug that is frequently used to treat multiple tumors. The anti-tumor effect of cisplatin is closely related to the tumor immune microenvironment (TIME), which includes several immune cell types, such as the tumor-associated macrophages (TAMs), cytotoxic T-lymphocytes (CTLs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and natural killer (NK) cells. The interaction between these immune cells can promote tumor survival and chemoresistance, and decrease the efficacy of cisplatin monotherapy.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany.
The photocatalytic degradation of unwanted organic species has been investigated for decades using modified and non-modified titania nanostructures. In the present study, we investigate the co-catalytic effect of single atoms (SAs) of Pt and Pt nanoparticles on titania substrates on the degradation of the two typical photodegradation model pollutants: Acid Orange 7 (AO7) and Rhodamine B (RhB). For this, we use highly defined sputter deposited anatase layers and load them with Pt SAs at different loading densities or alternatively with Pt nanoparticles.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental Science and Technology, Dalian University of Technology, Dalian, China.
Efficient detection methods are needed to monitor nitrogen dioxide (NO), a major NO pollutant from fossil fuel combustion that poses significant threats to both ecology and human health. Current NO detection technologies face limitations in stability and selectivity. Here, we present a transition metal nitride sensor that exhibits exceptional selectivity for NO, demonstrating a sensitivity 30 times greater than that of the strongest interfering gas, NO.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Physics and Electronics, Christ University, Bengaluru, Karnataka, India 560029.
Pain and inflammation are common symptoms of a majority of the diseases. Chronic pain and inflammation, as well as related dreadful disorders, remain difficult to control due to a lack of safe and effective medications. In this work, biocompatible platinum nanoparticles with significant analgesic and anti-inflammatory action were synthesized through a wet chemical method using polyethylene glycol-400 as a capping agent and sodium borohydride as a reducing agent.
View Article and Find Full Text PDFChem Biol Interact
December 2024
Laboratory of Biophysics, University of Gdańsk, Gdańsk, Poland. Electronic address:
Breast cancer was the most frequent cause of cancer death in females in 2022. Despite the development of personalized therapies, chemotherapy frequently remains the only available treatment method. However, the administration of classic antineoplastic drugs, like cisplatin (CDDP), often causes severe side effects and may lead to drug resistance making the therapy inefficient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!