Germanium, with a high theoretical capacity based on alloyed lithium and germanium (1384 mA h g LiGe), has stimulated tremendous research as a promising candidate anode material for lithium-ion batteries (LIBs). However, due to the alloying reaction of Li/Ge, the problems of inferior cycle life and massive volume expansion of germanium are equally obvious. Among all Ge-based materials, the unique layered 2D germanane (GeH and GeCH) with a graphene-like structure, obtained by a chemical etching process from the Zintl phase CaGe, could enable storage of large quantities of lithium between their interlayers. Besides, the layered structure has the merit of buffering the volume expansion due to the tunable interlayer spacing. In this work, the beyond theoretical capacities of 1637 mA h g for GeH and 2048 mA h g for GeCH were achieved in the initial lithiation reaction. Unfortunately, the dreadful capacity fading and electrode fracture happened during the subsequent electrochemical process. A solution, introducing single-wall carbon nanotubes (SWCNTs) into the structure of the electrodes, was found and further confirmed to improve their electrochemical performance. More noteworthy is the GeH/SWCNT flexible electrode, which exhibits a capacity of 1032.0 mA h g at a high current density of 2000 mA g and a remaining capacity of 653.6 mA h g after 100 cycles at 500 mA g. After 100 cycles, the hybrid germanane/SWCNT electrodes maintained good integrity without visible fractures. These results indicate that introducing SWCNTs into germanane effectively improves the electrochemical performance and maintains the integrity of the electrodes for LIBs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418117 | PMC |
http://dx.doi.org/10.1039/d1na00189b | DOI Listing |
J Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 China. Electronic address:
Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNiMnO materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute for Electrochemical Energy Storage (CE-IEES), Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
Sn-based electrodes are promising candidates for next-generation lithium-ion batteries. However, it suffers from deleterious micro-structural deformation as it undergoes drastic volume changes upon lithium insertion and extraction. Progress in designing these materials is limited to complex structures.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China.
Traditional hydrometallurgy methods for recycling the spent lithium-ion battery materials face some challenges, including the complex processes, and difficulties in separating Ni/Co/Mn. To address these issues, this work proposes a simple one-pot method to achieve a high Li leaching efficiency (99.2%) and simultaneously transform the majority of Ni (99.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
Attributable to sulfur's significant theoretical energy density, its affordability, and its environmentally friendly nature, lithium-sulfur batteries (LSBs) are recognized as advanced energy storage technologies with considerable potential. Nonetheless, the solubility and migration of polysulfides within the electrolyte substantially hinder their practical implementation. To address this issue, we developed a nitrogen-doped two-dimensional (2D) wavy carbon nanosheet material (NCN) by using the Pickering emulsion templating method.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China. Electronic address:
A sustainable supply of lithium from salt-lake brines is necessary due to the surge in demand of the lithium-battery market. However, the presence of coexisting ions, particularly Na, poses a significant challenge due to the similarities in charge, electronic structure, and hydrated size. The electrochemical system with manganese (Mn)-based lithium-ion (Li) sieves electrodes is a promising method for Li recovery, but often suffers from geometric configuration distortion, which reduces their selectivity and capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!