Plasmonic nanoparticles, such as gold nanoparticles (AuNPs), have been actively applied in solar vapor generation for seawater desalination and water purification, owing to their photothermal heating performances. Such nanoparticles have been frequently anchored within porous supporting materials to ensure easy handling and water absorption. However, there has been limited progress in improving the transport efficiency of light to nanoparticles within porous supports to achieve more effective photothermal heating. Here, we show an enhanced light absorption of AuNPs by supporting on a cellulose paper with tailored porous structures for efficient photothermal heating. The paper consists of AuNP-anchored cellulose nanofibers and cellulose pulp as the top and bottom layers, respectively, which provides dual-layered porous nano-microstructures in the perpendicular direction. Then, the bottom layer with pulp-derived microstructures reflects the transmitted light back to AuNPs within the top layer, which improves their light absorptivity. Thus, under 1 sun illumination, the dual-layered paper demonstrates superior performance in photothermal heating (increases from 28 °C to 46 °C) and solar vapor generation (1.72 kg m h) compared with the single-layered AuNP-anchored cellulose nanofiber paper even at the same AuNP content. Furthermore, the water evaporation rate per AuNP content of the dual-layered paper is more than 2 times higher than those of the state-of-the-art AuNP-anchored porous materials under the same light irradiation. This strategy enables the efficient use of precious plasmonic nanoparticles for further development of solar vapor generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417936PMC
http://dx.doi.org/10.1039/d0na00163eDOI Listing

Publication Analysis

Top Keywords

photothermal heating
20
solar vapor
16
vapor generation
16
cellulose paper
8
plasmonic nanoparticles
8
aunp-anchored cellulose
8
dual-layered paper
8
aunp content
8
cellulose
5
photothermal
5

Similar Publications

Photo-thermal catalysis, leveraging both thermal and non-thermal solar contributions, emerges as a sustainable approach for fuel and chemical synthesis. In this study, an Fe-based catalyst derived from a metal-organic framework is presented for efficient photo-thermal ammonia (NH) decomposition. Optimal conditions, under light irradiation without external heating, result in a notable 55% NH conversion.

View Article and Find Full Text PDF

Solar-driven dry reforming of methane (DRM) offers a milder, more cost-effective, and promising environmentally friendly pathway compared to traditional thermal catalytic DRM. Numerous studies have extensively investigated inexpensive Ni-based catalysts for application in solar-driven DRM. However, these catalysts often suffer from activity loss due to carbon accumulation.

View Article and Find Full Text PDF

A thermosensitive chitin hydrogel with mild photothermal-chemotherapy for facilitating multidrug-resistant bacteria infected wound healing.

Int J Biol Macromol

December 2024

Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Bacterial infection of skin wounds leads to serious health problems, including skin defects, inflammatory pain, and even death. To meet the requirements for successful treatment of complicated wounds, a multifunctional dressing is thus highly desirable. In this work, a thermosensitive hydrogel dressing (HBCA) exhibiting injectability, adaptiveness and mild photothermal antibacterial activity was developed for effective infected wound treatment.

View Article and Find Full Text PDF

Freeze-Induced Protein Assembly of α-Synuclein into Stable Microspheres to Fabricate Light-Induced Cargo Release Systems.

ACS Appl Mater Interfaces

December 2024

School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.

Stable hollow-type microspheres (MSs) have been fabricated using α-synuclein (αS), an amyloidogenic protein, via freeze-induced protein self-assembly. This assembly process involves three steps: rapid freezing to form spherical protein condensates from αS oligomers, frozen annealing to form a crust on the condensate and freeze-drying to create an interior lumen via the three-dimensional (3D) coffee-stain effect. The crust produced during the frozen-annealing step is a β-sheet-mediated protein structure that is presumed to be created at the quasi-liquid layer of the protein-ice interface and thus contributes to the stability of MSs in aqueous solutions at room temperature without any additional surface stabilization.

View Article and Find Full Text PDF

Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!