Here we report new organic/inorganic hybrid colloidal liquid crystals that consist of colloidal calcium carbonate (CaCO)/poly(acrylic acid) (PAA) hybrid nanodisks. We selectively synthesized anisotropic liquid-crystalline CaCO-based nanodisk and nanorod composites in water/methanol mixtures, which formed discotic and calamitic nematic liquid crystals in their colloidal dispersions, respectively. The vaterite nanodisks and calcite nanorods were selectively synthesized in methanol-rich and water-rich solutions, respectively. The observation of these materials with transmission electron microscopy clarified the atomic-scale structures of these nanodisks and nanorods, revealing the self-organized CaCO/PAA hybrid structures with the ability to form colloidal liquid crystals. The liquid crystals were prepared under mild and aqueous conditions by methods using acidic polymers inspired by the biomineralization process. The present approach provides new insights into the design of organic/inorganic hybrid colloidal liquid crystals and development of environmentally friendly functional hybrid materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417261PMC
http://dx.doi.org/10.1039/d0na00130aDOI Listing

Publication Analysis

Top Keywords

liquid crystals
20
colloidal liquid
12
nanodisks nanorods
8
organic/inorganic hybrid
8
hybrid colloidal
8
selectively synthesized
8
hybrid
5
colloidal
5
liquid
5
crystals
5

Similar Publications

Maintaining hexagonal structures through interfacial positioning of crosslinkers for nanofiltration.

J Colloid Interface Sci

December 2024

Institute for Frontier Materials, Deakin University, Geelong VIC 3216, Australia. Electronic address:

Hypothesis: Optimizing interfacial positioning of crosslinkers within a reactive self-assembled hexagonal lyotropic liquid crystals (HLLC) system could assist in retaining the hexagonal structure during polymerization and thereby improving water filtration performances of the as-synthesized nanofiltration membranes.

Experiments: The positioning of the hydrophilic crosslinker, poly (ethylene glycol) diacrylate (PEGDA), within the reactive HLLC system was systematically investigated using H and C solid nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. The structural variation and water filtration performances of these HLLC systems with/without crosslinkers after polymerization were further studied using grazing incidence SAXS (GISAXS) and crossflow filtration tests, respectively.

View Article and Find Full Text PDF

Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials.

View Article and Find Full Text PDF

In Situ Programmable, Active, and Interactive Crystallization by Localized Polymerization.

Adv Mater

December 2024

Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea.

Additive manufacturing has sought active and interactive means of creating predictable structures with diverse materials. Compared to such active manufacturing tools, current crystallization strategies remain in statistical and passive programs of crystals via macroscale thermodynamic controllers, commonly lacking active means to intervene in crystal growth in a spatiotemporal manner. Herein, a strategy toward active and interactive programming and reprogramming of crystals, realized by real-time tangible feedback on growing crystals by delicately controlling the degree of in-situ, localized photopolymerization of polymeric structures via additive manufacturing is presented.

View Article and Find Full Text PDF

Two-dimensional (2D) high-entropy transition metal dichalcogenides (HETMDs) have gained significant interest due to their structural properties and correlated possibilities for high-end devices. However, the controlled synthesis of 2D HETMDs presents substantial challenges owing to the distinction in the inherent characteristics among diverse metal elements in the synthesis, such as saturated vapor pressure of precursors and formation energy of products. Here, we present the synthesis of a 2D HETMD single crystal with 0.

View Article and Find Full Text PDF

Purpose: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease that severely impairs patient's life quality and represents significant therapeutic challenge due to its pathophysiology arising from skin barrier dysfunction. Topical corticosteroids, the mainstay treatment for mild to moderate AD, are usually formulated into conventional dosage forms that are impeded by low drug permeation, resulting in high doses with consequent adverse effects, and also lack properties that would strengthen the skin barrier. Herein, we aimed to develop biomimetic lamellar lyotropic liquid crystals (LLCs), offering a novel alternative to conventional AD treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!