Here, a novel strategy for fabricating plasmonic-polymer hybrid nanostructures the thermal synthesis of copper sulfide (CuS) nanocrystals within poly(-vinyl caprolactam)-based microgels is presented. In particular, the carboxyl groups inside the microgels enriched Cu ions electrostatic interaction, which further facilitated the nucleation inside the microgel matrix. The increase in nanocrystals' sizes with more added precursors indicated nanocrystals' continuous growth. The plasmon resonances in CuS nanocrystals were obtained due to the high-density free carriers in the covellite CuS. Both the sizes and the plasmon resonances of the as-synthesized CuS nanocrystals could be modulated by adjusting the amount of precursor. The fabricated hybrid nanostructures possessed good temperature responsivity, adjustable loading capacity, good colloidal stability, and pH dependent plasmon resonance. Furthermore, effective photothermal conversion performance was obtained under the illumination of a 980 nm NIR laser for controlling the phase transition of microgels, revealing promising potential in remotely controlled release of drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419233 | PMC |
http://dx.doi.org/10.1039/c9na00668k | DOI Listing |
Sci Rep
December 2024
School of Biomedical Sciences, Suzhou Chien-shiung Institute of Technology, Suzhou, 215411, People's Republic of China.
Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain.
Preeclampsia is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity worldwide. Early diagnosis is crucial for mitigating its adverse effects, and recent investigations have identified endoglin as a potential biomarker for this purpose. Here, we present the development of a hybrid biosensor platform for the ultrasensitive detection of endoglin, aimed at enabling the early diagnosis of preeclampsia.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye.
detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
This review examines recent advances in surface-enhanced Raman spectroscopy (SERS) for urinary metabolite analysis, focusing on the development and application of noble metal nanohybrids. We explore the diverse range of hybrid materials, including carbon-based, metal-organic-framework (MOF), silicon-based, semiconductor, and polymer-based systems, which have significantly improved SERS performance for detecting key urinary biomarkers. The principles underlying SERS enhancement in these nanohybrids are discussed, elucidating both electromagnetic and chemical enhancement mechanisms.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
ETH Zürich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland.
Coating synthetic nanoparticles (NPs) with lipid membranes is a promising approach to enhance the performance of nanomaterials in various biological applications, including therapeutic delivery to target organs. Current methods for achieving this coating often rely on bulk approaches which can result in low efficiency and poor reproducibility. Continuous processes coupled with quality control represent an attractive strategy to manufacture products with consistent attributes and high yields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!