Dual-tethered nanosystems which combine different properties at the nano scale represent a new fascinating frontier of research. In the present work, we present an example of a dual nanosystem designed to enhance the radical scavenging performances. Fulleropyrrolidine has been bonded to cerium oxide nanoparticles (nanoceria) to form a dual tethered system. Fulleropyrrolidine, bearing a silyl-alkoxide group, has been chemically bonded to the nanoceria surface, providing unprecedented antioxidant activity. This effect has been evaluated using an L929 mouse fibroblast cell line exposed to UV light. The fulleropyrrolidine molecules tethered to nanoceria enhance the radical scavenging properties of the oxide. At the same time, fulleropyrrolidine mitigates the potential toxicity of nanoceria at high doses. On the other hand, cerium oxide nanoparticles provide a strong hydrophilicity to the dual nanosystem, ensuring the administration in a cellular environment and preventing macroscopic aggregation of fulleropyrrolidine. The rational assembly of two different components in one nanosystem appears as a promising route for the development of "smarter" medical and cosmetic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417345PMC
http://dx.doi.org/10.1039/d0na00048eDOI Listing

Publication Analysis

Top Keywords

dual nanosystem
12
enhance radical
8
radical scavenging
8
cerium oxide
8
oxide nanoparticles
8
fulleropyrrolidine
5
fulleropyrrolidine-functionalized ceria
4
ceria nanoparticles
4
nanoparticles tethered
4
dual
4

Similar Publications

Liver fibrosis, a hallmark of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition and scar tissue formation. Current antifibrotic nanomedicines face significant limitations, including poor penetration into fibrotic tissue, rapid clearance, and suboptimal therapeutic efficacy. The dense fibrotic ECM acts as a major physiological barrier, necessitating the development of a targeted delivery strategy to achieve effective therapeutic outcomes.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that often results in irreversible joint erosion and disability. Methotrexate (MTX) is the first-line drug against RA, but the significant side effects of long-term administration limit its use. Therefore, new therapeutic strategies are needed for treating RA.

View Article and Find Full Text PDF

Lignin Molar Mass Estimation by Dispersion Analysis.

Macromol Rapid Commun

January 2025

Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Copenhagen, 1958, Denmark.

Lignin's complex and heterogeneous molecular structure poses significant challenges for accurate molar mass determination, which is important for its utilization in industrial applications, such as biochemicals, nanoparticles, biobased binders, and biofuels. This study evaluates the potential of Taylor Dispersion Analysis (TDA) for measuring lignin size and compares it with size-exclusion chromatography (SEC) and diffusion-ordered spectroscopy (DOSY) NMR. Using dual Gaussian fitting, flow-induced dispersion analysis (FIDA), a TDA-based method, successfully determined the average hydrodynamic radii of multiple species in solvent-fractionated soda grass lignin samples, producing results consistent with DOSY.

View Article and Find Full Text PDF

Due to the inherent aseptic and enclosed characteristics of joint cavity, septic arthritis (SA) almost inevitably leads to intractable infections and rapidly progressing complex pathological environments. Presently, SA faces not only the deficient effectiveness of the gold-standard systemic antibiotic therapy but also the scarcity of effective localized targeted approaches and standardized animal models. Herein, an ingenious multifunctional nanosystem is designed, which involves the methylation of hyaluronic acid (HA), copolymerization with DEGDA, loading with vancomycin (VAN), and then coating with fused macrophage-platelet membrane (denoted as FM@HA@VAN).

View Article and Find Full Text PDF

Ultrasmall Au-GRHa Nanosystem for FL/CT Dual-Mode Imaging-Guided Targeting Photothermal Therapy of Ovarian Cancer.

Anal Chem

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

As the most common and lethal cancer of the female gonads, ovarian cancer (OC) has a grave impact on people's health. OC is asymptomatic, insidious in onset, difficult to diagnose and treat, fast-growing, and easy to metastasize and has poor prognosis and high mortality. How to detect OC as early as possible and treat it without side effects has become a challenging medical problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!