Influence of organic promoter gradient on the MoS growth dynamics.

Nanoscale Adv

NEST, Istituto Nanoscienze - CNR, Scuola Normale Superiore Piazza San Silvestro 12 56127 Pisa Italy

Published: June 2020

Chemical vapor deposition has been demonstrated to be the most efficient, versatile and reliable technique for the synthesis of monolayers of transition metal dichalcogenides. The use of organic promoters during the growth process was a turning point in order to increase the monolayer lateral size or to obtain complete coverage of the growth substrate. In this work we clarify the influence of the promoter gradient on the growth dynamics of MoS. In particular, we place a sacrificial substrate covered with a promoter (a low sublimation-temperature perylene-based compound) downstream with respect to the growth substrate in order to maximize its gradient on the growth substrate through upstream diffusion. We demonstrate that the morphology and the number of layers of MoS are drastically affected by the distance of the growth substrate from the promoter sacrificial substrate. The farthermost area from the promoter substrate presents micrometric MoS triangular monolayers and large low hierarchy dendritic multi-layer structures. On the contrary the closest area reveals an almost continuous polycrystalline MoS monolayer, with bilayer terraces, with a lateral dimension up to hundreds of micrometers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418129PMC
http://dx.doi.org/10.1039/d0na00147cDOI Listing

Publication Analysis

Top Keywords

growth substrate
16
promoter gradient
8
growth dynamics
8
gradient growth
8
sacrificial substrate
8
growth
7
substrate
7
promoter
5
mos
5
influence organic
4

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

A parallel bioreactor strategy to rapidly determine growth-coupling relationships for bioproduction: a mevalonate case study.

Biotechnol Biofuels Bioprod

January 2025

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Background: The climate crisis and depleting fossil fuel reserves have led to a drive for 'green' alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation.

View Article and Find Full Text PDF

The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates.

View Article and Find Full Text PDF

Forest restoration has been a common practice to safeguard water quality and stream health but it is unclear to which extent and pace forest restoration recovers stream ecosystem structure and functions. Also, stream health might be affected by the forest restoration type and the quality of the interventions. Here, we sought to evaluate the recovery of stream habitat and water quality through forest restoration in catchments dominated by pasturelands, and explored the relationship between landscape structure and stream ecosystem recovery.

View Article and Find Full Text PDF

Exploring the Unique Properties and Superior Schwann Cell Guiding Abilities of Spider Egg Sac Silk.

ACS Appl Bio Mater

January 2025

Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.

Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!