Polyoxometalates (POMs), as emerging inorganic metal oxides, have been shown to have significant biological activity and great medicinal value. Nowadays, biologically active POM-based organic-inorganic hybrid materials have become the next generation of antibacterial and anticancer drugs because of their customizable molecular structures related to their highly enhanced antitumor activity and reduced toxicity to healthy cells. In this review, the current developed strategies with POM-based materials for the purpose of antibacterial and anticancer activities from different action principles inducing cell death and hyperpolarization, cell plasma membrane destruction, interference with bacterial respiratory chain and inhibiting bacterial growth are overviewed. Moreover, specific interactions between POM-based materials and biomolecules are highlighted for a better understanding of their antibacterial and anticancer mechanisms. POMs have great promise as next-generation antibacterial and anticancer drugs, and this review will provide a valuable systematic reference for the further development of POM-based nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470027PMC
http://dx.doi.org/10.1039/d2na00391kDOI Listing

Publication Analysis

Top Keywords

antibacterial anticancer
16
anticancer drugs
8
pom-based materials
8
antibacterial
5
polyoxometalate-based nanocomposites
4
nanocomposites antitumor
4
antitumor antibacterial
4
antibacterial applications
4
applications polyoxometalates
4
polyoxometalates poms
4

Similar Publications

Phytochemical Profiling, Bioactivity, and Insecticidal Effectiveness of L. Leaf Extracts Against sp.

Plants (Basel)

December 2024

Laboratory of Entomology, Juana Díaz Agricultural Experiment Station, Department of Agro-Environmental Sciences, University of Puerto Rico, Mayaguez Campus, Mayaguez, PR 00681, USA.

Plant botanical extracts are recognized for being a source of biologically active phytochemicals that potentially have diverse applications. The phytochemical composition, potential cytotoxicity, and insecticidal effectiveness of three leaf extracts from the folkloric medicinal plant L. (Calophyllaceae) were investigated.

View Article and Find Full Text PDF

Quinolinones, also called quinolones, are a group of heterocyclic compounds with a broad spectrum of biological activities. These compounds occur naturally in plants and microorganisms but can also be obtained synthetically. The first synthesis of quinolinones took place at the end of the 19th century, and the most recent methods were published just a few years ago.

View Article and Find Full Text PDF

This paper presents the synthesis and characterization of new thiosemicarbazone derivatives with potential applications as antibacterial, antioxidant and anticancer agents. Six thiosemicarbazone derivatives (L-L5) were synthesized by reacting an appropriate thiosemicarbazide derivative with 2-pyridinecarboxaldehyde. The structures of the obtained compounds were confirmed using mass spectrometry, infrared spectroscopy, and NMR spectroscopy.

View Article and Find Full Text PDF

Cytotoxic and antibacterial activity of naturally occurring agglutinin produced from the root of Poir.

Nat Prod Res

January 2025

Bioprocess Engineering Division, Smykon Biotech, Kanniyakumari, Tamilnadu, India.

Lectins are naturally occurring agglutinins which are produced more from plants sources compared to animal sources. The present study aims to screen the potential applications of lectin isolated from the mangrove plant, Poir. This root agglutinin of showed highest HA titre with buffalo erythrocytes.

View Article and Find Full Text PDF

Emerging Violet Phosphorus Nanomaterial for Biomedical Applications.

Adv Healthc Mater

January 2025

State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China.

Violet phosphorus (VP) is a phosphorus allotrope first discovered by Hittorf in 1865, which has aroused more attention in the biomedical field in recent years attributed to its gradually discovered unique properties. VP can be further categorized into bulk VP, VP nanosheets (VPNs), and VP quantum dots (VPQDs), and chemical vapor transport (CVT), liquid-phase/mechanical/laser exfoliation, and solvothermal synthesis are the common preparation approaches of bulk VP, VPNs, and VPQDs, respectively. Compared with another phosphorus allotrope (black phosphorus, BP) that is once highly regarded in biomedical applications, VP nanomaterial (namely VPNs and VPQDs) not only exhibits tunable bandgap, moderate on/off current ratio, and good biodegradability, but shows enhanced stability and biosafety as well, allowing it to be a promising candidate for a variety of biomedical applications like antibacterial therapy, anticancer therapy, and biosensing and disease diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!