With the development of multifunction and miniaturization in modern electronics, polymeric films with strong mechanical performance and high thermal conductivity are urgently needed. Two-dimensional transition metal carbides and nitrides (MXenes) have attracted extensive attention due to their tunable surface chemistry, layered structure and charming properties. However, there are few studies on using MXenes as fillers to enhance polymer properties. In this paper, we fabricate a three-dimensional foam by the freeze-drying method to enhance the interfacial interaction between adjacent MXene sheets and polyimide (PI) macromolecules, and then a composite film with a dense and well-ordered layer-by-layer structure is produced by the hot-pressing process. Based on the secondary orientation strategy, the resultant MXene/PI film exhibits an enhanced thermal conductivity of 5.12 ± 0.37 W m K and tensile strength of 102 ± 3 MPa. Moreover, the composite film has good flexibility and flame retardancy owing to the synergistic effect of MXene sheets and PI chains. Hence, the MXene/PI composite film with the properties of flexibility, flame-retardancy, high mechanical strength and efficient heat transmission is expected to be used as the next thermal management material in a variety of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419387PMC
http://dx.doi.org/10.1039/d1na00415hDOI Listing

Publication Analysis

Top Keywords

composite film
12
based secondary
8
secondary orientation
8
orientation strategy
8
thermal conductivity
8
mxene sheets
8
film
5
flame-retardant mxene/polyimide
4
mxene/polyimide film
4
film outstanding
4

Similar Publications

UV-Resistant Nanostructured Anti-reflective Film for Achieving Efficiency Enhancement of Perovskite Solar Cells and Potential of Fabricating Large-Scale Cu(In, Ga)Se Solar Cells.

ACS Appl Mater Interfaces

January 2025

Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China.

Sticker-type transparent antireflective film (STAF) is applied to perovskite solar cells (PSCs) to reduce the reflection and improve the light-trapping ability of PSCs. However, the development of STAF is hindered by many factors, such as expensive materials, low actual service life, unsatisfactory antireflective effect, and a lack of research on stability. This work proposes an ultraviolet (UV)-resistant enhanced sticker-type nanostructure acrylic resin antireflective film (SNAAF), which is applied to the incident surface of PSCs.

View Article and Find Full Text PDF

The ability to convert moisture signals into electrical signals through contactless control underpins a wide range of applications, including health monitoring, disaster warning, and energy harvesting. Despite its potential, the effective utilization of low-grade energy remains challenging, as it often requires complex device architectures that limit scalability and integration, particularly in wearable technologies. Here, we present a soft, flexible moisture-electric converter made from cellulose nanocrystals and polyvinyl alcohol composite films, designed for a novel touchless interactive platform.

View Article and Find Full Text PDF

Aim: This study aimed to develop and evaluate lornoxicam (LXM) and thiocolchicoside (TCS) transferosomal transdermal patches.

Background: Oral administration of LXM and TCS can lead to gastric irritation, necessitating alternative delivery methods for pain and inflammation relief. Incorporating LXM & TCS into transferosomes within a transdermal patch offers a potential solution.

View Article and Find Full Text PDF

Adaptive Phase Change Microcapsules for Efficient Sustainable Cooling.

ACS Appl Mater Interfaces

January 2025

School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.

Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.

View Article and Find Full Text PDF

In this study, composite films were developed by encapsulating cassia oil (CO) with β-cyclodextrin through a microencapsulation technique and incorporating it into a chitosan (CS), polyvinyl alcohol (PVA) and glycerol matrix. The primary objective of the film was to inhibit bacterial growth on the surface of fresh bananas and extend their shelf life. Characterization methods were employed to evaluate the physical properties and functionality of the composite films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!