We demonstrate and analyze the use of metamaterials featuring an analogue of electromagnetically induced transparency (EIT) in slow light technology. For most metamaterials, EIT-like effects suffer from intrinsic ohmic loss, and the metamaterial-based slow-light effect can only be tuned passively, which limits their application in slow light devices. We propose a hybrid metamaterial with a unit cell composed of a ring resonator formed from photoactive silicon (Si) and a rectangular bar formed from metallic silver (Ag). Based on an analogue of EIT in the designed hybrid metamaterial, we theoretically demonstrate an all-optical tunable slow-light effect in the telecommunication window. We successfully demonstrate the possibility of designing novel all-optical tunable chip-scale slow-light devices that could be used in optical buffering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419711PMC
http://dx.doi.org/10.1039/d1na00232eDOI Listing

Publication Analysis

Top Keywords

all-optical tunable
12
hybrid metamaterial
12
tunable slow-light
8
based analogue
8
analogue electromagnetically
8
electromagnetically induced
8
induced transparency
8
slow light
8
slow-light
4
slow-light based
4

Similar Publications

Article Synopsis
  • The study investigates how varying concentrations of Zn ions affect the optical properties of BaNiZnFeO ferrites, showcasing the ability to tune the band gap through Zn doping.
  • X-ray diffraction (XRD) confirmed that the material maintained a single-phase structure and exhibited changes in grain size and lattice parameters with increased Zn content.
  • UV-visible spectroscopy demonstrated that the band gap and electrical properties improved with higher Zn concentrations, indicating potential uses in optoelectronics and energy storage applications.
View Article and Find Full Text PDF

Metasurface with all-optical tunability for spatially-resolved and multilevel thermal radiation.

Nanophotonics

April 2024

Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Manipulating the thermal emission in the infrared (IR) range significantly impacts both fundamental scientific research and various technological applications, including IR thermal camouflage, information encryption, and radiative cooling. While prior research has put forth numerous materials and structures for these objectives, the significant challenge lies in attaining spatially resolved and dynamically multilevel control over their thermal emissions. In this study, a one-step ultrafast laser writing technique is experimentally demonstrated to achieve position-selective control over thermal emission based on the phase-change material GeSbTe (GST).

View Article and Find Full Text PDF

Mid-infrared photodetection with 2D metal halide perovskites at ambient temperature.

Sci Adv

December 2024

Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA.

Article Synopsis
  • Detection of mid-infrared (MIR) light is vital for various technologies like night vision and thermal imaging, yet traditional methods often require complex setups or cooling.
  • This study introduces a novel approach using two-dimensional metal halide perovskites (2D-MHPs) that enables high-sensitivity detection of MIR light at room temperature, with capabilities down to 1 nanowatt per square micrometer.
  • The technology achieves further sensitivity improvements using unique membrane structures and photonic strategies, covering a range of infrared wavelengths from 2 to 10.6 micrometers, paving the way for advancements in areas like environmental monitoring and molecular sensing.
View Article and Find Full Text PDF

Directionally tunable co- and counterpropagating photon pairs from a nonlinear metasurface.

Nanophotonics

August 2024

ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.

Article Synopsis
  • * This study showcases the first-ever precise control of the emission angle for photon pairs generated in a nonlinear metasurface, achieving high-quality coincidence ratios in the emitted light.
  • * A silicon dioxide grating on a nonlinear lithium niobate layer was used to facilitate this control, and the findings suggest potential for further improvements through modulation techniques, enhancing the capabilities of photon-pair sources.
View Article and Find Full Text PDF
Article Synopsis
  • The rise of modern telecommunication technologies, like 5G and the Internet-of-Things (IoT), has significantly increased data generation and the demand for advanced data processing capabilities.
  • Researchers introduced a microwave photonic (MWP) processing unit that uses elemental antimony to create a compact all-optical RF filter designed to operate as a low-pass filter with a bandwidth of 300 kHz.
  • The study demonstrates the filter's use as an envelope detector for demodulating signals and discusses potential methods for achieving tunable bandwidth.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!