Vanadium pentoxide is the most important vanadium compound by being the precursor to most vanadium alloys. It also plays an essential role in the production of sulfuric acid as well as in metal-ion batteries and supercapacitors. In this paper, pulsed laser ablation in liquids is used to synthesize "naked" vanadium pentoxide nanostructures. The resulting particles take up "nearly-spherical" and "flower-like" morphologies, composed of α-VO and β-VO crystalline phases. Even "naked", the nanostructures are stable in time with a zeta potential of -51 ± 7 mV. In order to maximize the production of vanadium pentoxide nanostructure, the optimal repetition rate was determined to be @ ∼6600 Hz when irradiating a pure vanadium target in DI-water. This corresponds to a cavitation bubble lifetime of around ∼0.15 ms. At that repetition rate, the production reached ∼10 ppm per minute of irradiation. Finally, from the characterization of the α-VO and β-VO nanostructures, the surface energy of each phase has been carefully determined at 0.308 and 1.483 J cm, respectively. Consequently, the β-phase was found to display a surface energy very close to platinum. The exciton Bohr radius has been determined at 3.5 ± 0.7 nm and 2.0 ± 0.6 nm for α-VO and β-VO phases, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417740 | PMC |
http://dx.doi.org/10.1039/d1na00029b | DOI Listing |
J Colloid Interface Sci
January 2025
School of Chemistry, Dalian University of Technology, Dalian 116024 PR China. Electronic address:
The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).
View Article and Find Full Text PDFChem Asian J
January 2025
Shaanxi University of Technology, School of Materials Science and Engineering, No.1 East Ring Rd., Hantai District, 723001, Hanzhong, CHINA.
Lithium-sulfur (Li-S) batteries are promising energy storage devices due to their high theoretical energy density and cost-effectiveness. However, the shuttle effect of polysulfides during the charging and discharging processes leads to a rapid decline in capacity, thereby restricting their application in energy storage. The separator, a crucial component of Li-S batteries, facilitates the transport of Li+ ions.
View Article and Find Full Text PDFWaste Manag
January 2025
Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada. Electronic address:
Bitumen-derived petcoke contains significant quantities of vanadium, recoverable from the fly ash formed during combustion. Despite efforts to process vanadium recovery from petcoke, detailed cost information, critical for stakeholders and decision-makers, remains absent in the public domain. To address this gap, we developed data-intensive techno-economic models specifically for vanadium recovery from petcoke fly ash.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Dept. of Chemistry, Netaji Subhas University of Technology (N.S.U.T.), erstwhile N.S.I.T., Azad Hind Fauj Marg, Dwarka, Delhi 110078, India. Electronic address:
This study aims to enhance the antidiabetic potential of Vanadium pentoxide (VO) by synthesizing chitosan-based nanoparticles (NPs). Chitosan and its derivatives were used to fabricate VO NPs, ensuring enhanced antioxidant and antidiabetic activity. Surface topography was analyzed using atomic force microscopy (AFM), revealing bioactive sites on the NPs with improved electron-transfer capability, as confirmed by cyclic voltammetry (CV).
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
January 2025
Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria. Electronic address:
Vanadium pentoxide (VO) is one of the compounds that have been reported to pose varying degrees of toxicity upon exposure; thus, making it a challenging environmental hazard that affects living organisms. This study investigated the cytotoxicity effects of daily sub-lethal oral doses of VO on the bone marrow of male Oryctolagus cuniculus after 21 days. Male O.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!