The fabrication of supramolecularly engineered two-dimensional (2D) networks using simple molecular building blocks is an effective means for studying host-guest chemistry at surfaces toward the potential application of such systems in nanoelectronics and molecular devices. In this study, halogen-bonded molecular networks were constructed by the combination of linear halogen-bond donor and acceptor ligands, and their 2D structures at the highly oriented pyrolytic graphite/1-phenyloctane interface were studied by scanning tunneling microscopy. The bi-component blend of the molecular building blocks possessing tetradecyloxy chains formed a lozenge structure halogen bonding. Upon the introduction of an appropriate guest molecule (, coronene) into the system, the 2D structure transformed into a hexagonal array, and the central pore of this array was occupied by the guest molecules. Remarkably, the halogen bonding of the original structure was maintained after the introduction of the guest molecule. Thus, the halogen-bonded molecular networks are applicable for assembling guest species on the substrate without the requirement of the conventional rigid molecular building blocks with symmetry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419264PMC
http://dx.doi.org/10.1039/d0na00616eDOI Listing

Publication Analysis

Top Keywords

molecular networks
12
molecular building
12
building blocks
12
scanning tunneling
8
tunneling microscopy
8
halogen-bonded molecular
8
halogen bonding
8
guest molecule
8
molecular
7
dynamic host-guest
4

Similar Publications

Background: Endurance athletes tend to accumulate large training volumes, the majority of which are performed at a low intensity and a smaller portion at moderate and high intensity. However, different training intensity distributions (TID) are employed to maximize physiological and performance adaptations.

Objective: The objective of this study was to conduct a systematic review and network meta-analysis of individual participant data to compare the effect of different TID models on maximal oxygen uptake (VO) and time-trial (TT) performance in endurance-trained athletes.

View Article and Find Full Text PDF

In silico analysis of non-conventional gene targets for genetic interventions to enhance fatty acid production: a review.

Mol Biol Rep

January 2025

Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India.

Since the 1990s, fatty acids (FA) have drawn significant industrial attention due to their diverse applications creating a demand for biological systems capable of producing high FA titers. While various strategies have been explored to achieve this, many of the conventional approaches rely on extensive genetic manipulations, which often result in strain instability, thus limiting its potential to yield better FA titers. Moreover, stresses such as pH, osmotic, and oxidative imbalances generated during FA production aggravate these challenges, further limiting FA titers.

View Article and Find Full Text PDF

From fatty liver to fibrosis: the impact of miRNAs on NAFLD and NASH.

Funct Integr Genomics

January 2025

Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.

Non-alcoholic fatty liver disease (NAFLD) is a disease with various levels varying from fatty liver steatosis to acute steatosis which is non-alcoholic steatohepatitis (NASH), which can develop into hepatic failure, as well as in some conditions it can develop into hepatocellular carcinoma (HCC). In the NAFLD and NASH context, aberrant microRNA (miRNA) expression has a thorough contribution to the incidence and development of these liver disorders by influencing key biological actions, involving lipid metabolism, inflammation, and fibrosis. Dysregulated miRNAs can disrupt the balance between lipid accumulation and clearance, exacerbate inflammatory responses, and promote fibrogenesis, thus advancing the severeness of the disorder from simple steatosis to more complex NASH.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a severe central nervous system injury without effective therapies. PANoptosis is involved in the development of many diseases, including brain and spinal cord injuries. However, the biological functions and molecular mechanisms of PANoptosis-related genes in spinal cord injury remain unclear.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is a widespread highly malignant type of lung cancer. Conventional chemotherapeutic drugs may be accompanied by both drug resistance and serious side effects in patients. Therefore, safer and more effective medications are urgently needed for the treatment of NSCLC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!