The efficient dispersion of carbon nanotubes in a given polymer matrix remains an open challenge. Unless addressed, the full potential of carbon nanotubes towards influencing electronic properties of a composite is far from being well understood. Although several reports are available in an open forum that addresses this challenge using various strategies, a mechanistic insight is still lacking. Herein, we have conjugated different electron-rich species with multi-walled carbon nanotubes. We systematically studied their properties by fluorescence lifetime measurements using time-correlated single-photon counting and by density functional theory. Although such conjugations vary with the electronic structure of the electron-rich species, theoretical and computational modeling sheds more light on the actual orientation of such conjugation. Taken together, the fluorescence lifetime and the type of conjugation allowed us to gain mechanistic insight into this conjugation, which further influenced several key properties of the composites. Herein, we attempted to understand these factors influencing the electrical conductivity, and electromagnetic (EM) shielding efficiency in the composite. With the addition of aminoanthracene, which established a T-shaped conjugation with multiwall carbon nanotubes (2 wt%), a remarkable -25 dB shielding effectiveness was achieved with 87% absorption for a shielding material of just 1 mm thick. The actual shielding mechanism, effect of the electronic structure, and the co-relation with the fluorescence lifetime opens new avenues in designing composite-based EM shielding materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417216PMC
http://dx.doi.org/10.1039/d0na00444hDOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
20
fluorescence lifetime
16
electron-rich species
12
multiwall carbon
8
electromagnetic shielding
8
mechanistic insight
8
electronic structure
8
shielding
6
carbon
5
nanotubes
5

Similar Publications

This paper is a comprehensive reference for researchers interested in flexible AC alternating current transmission systems (FACTS) technologies. This study investigates modified UPFC models. Besides UPFC, an overview of DPFC will be presented, and the critical differences between these advanced power flow control technologies will be discussed.

View Article and Find Full Text PDF

The continuous development and application of pesticides in agriculture require robust multiresidue detection methods to guarantee food safety. This study introduces a novel method for multiresidue determination of pesticides in eggplants using the QuEChERS procedure, incorporating a clean-up step using carbon nanotubes stabilized in chitosan sponge (CNT-CS) and ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) for analysis. Upon identifying the optimal extraction conditions, various sorbents were assessed for their efficacy in the dispersive solid-phase extraction (d-SPE).

View Article and Find Full Text PDF

This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.

View Article and Find Full Text PDF

Controlled Introduction of sp3 Quantum Defects in Fluorescent Carbon Nanotubes by Mechanochemistry.

Angew Chem Int Ed Engl

January 2025

Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Inorganic Chemistry, Universitaetsstrasse 150, 44801, Bochum, GERMANY.

Precise control over low-dimensional materials holds an immense potential for their applications in sensing, imaging and information processing. The controlled introduction of sp3 quantum defects (color centers) can be used to tailor the optoelectronic properties of single-walled carbon nanotubes (SWCNTs) in the tissue transparency (> 800 nm) and the telecommunication window. However, an uncontrolled functionalization of SWCNTs with defects leads to a loss of the NIR fluorescence.

View Article and Find Full Text PDF

Performance and emissions of diesel engine combustion lubricated with Jatropha bio-lubricant and MWCNT additive.

Sci Rep

January 2025

Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

Vegetable oil-based lubricants, modified through transesterification and epoxidation, present a sustainable alternative to mineral lubricants for transport and industrial use. This study evaluates epoxidized jatropha oil (EJA) enhanced with multi-walled carbon nanotubes (MWCNT) as a bio-lubricant for compression ignition engines. MWCNT, dispersed in EJA using an ultrasonic probe sonicator with Triton X-100 as a surfactant, was tested at nanoparticle concentrations from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!