The synthesis of self-assembled peptide nanoparticles using a facile one-pot synthesis approach is gaining increasing attention, allowing therapy in combination with diagnosis. Their drawback is limited diagnostic potential, which can be improved after necessary modifications and efficacious functionalization. Herein, a cyclic heptapeptide having the Arg-Gly-Asp-Lys-Leu-Ala-Lys sequence was modified by conjugation of the ε-amino group of the terminal lysine residue with diethylenetriamine pentaacetic acid (DTPA) as a bifunctional chelating agent (BFC) for radiolabeling with a γ-emitting radionuclide (Tc, half-life 6.01 h; energy 140 keV). Further, the free amino group of the middle lysine residue was successfully conjugated with near-infrared fluorescence (NIRF) dye Cyanine5.5 -succinimidyl ester (Ex/Em = 670/701 nm) by a co-assembly method to form newly designed novel NIRF dye conjugated self-assembled peptide-DTPA (Cy5.5@SAPD) nanoparticles. The fluorescent nanoparticle formation was confirmed by using a fluorescence spectrophotometer (Ex/Em = 650/701 nm), and the transmission electron microscope (TEM) images showed a size of ∼ 40 nm with a lattice fringe distance of 0.294 nm. Cytotoxicity and confocal laser scanning microscopy (CLSM) studies showed that these nanoparticles possess a high affinity for the αβ-integrin receptor overexpressed on brain tumor glioblastoma with an EC = 20 μM. Moreover, these nanoparticles were observed to have potential to internalize into U87MG cells more prominently than HEK-293 cancer cells and induce apoptosis. The apoptosis assay showed 79.5% apoptotic cells after 24 h treatment of Cy5.5@SAPD nanoparticles. Additionally, these nanoparticles were also radiolabeled with Tc for the single photon emission computed tomography (SPECT) imaging study in tumor-bearing female Balb/c mice. The excellent imaging feature of Cy5.5@SAPD-Tc nanoparticles as a multimodal (SPECT/NIRF) diagnostic probe, as well as noteworthy therapeutic potential was observed. The results suggested that our newly designed novel dual-targeting dual-imaging nanoparticles may serve as an admirable theranostic probe to treat brain tumor glioblastoma multiforme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419261 | PMC |
http://dx.doi.org/10.1039/d1na00597a | DOI Listing |
Alzheimers Dement
December 2024
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.
Background: The vicious cycle between depression and dementia increases the risk of Alzheimer's Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.
Method: 5XFAD and wild-type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.
Background: Impaired Aβ clearance plays a key role in the common, late-onset AD. Anti-Aβ immunotherapies are controversial, in part because of high rates of serious side effects including edema, microhemorrhages, and siderosis, highlighting the importance of the development of alternative Aβ clearance strategy. Here, we introduce a bioinspired nanoparticle named MG-PE3 crossing the human blood-brain barrier (BBB) and clearing Aβ with no adverse effect.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFRecent Pat Nanotechnol
January 2025
Ansteel Beijing Research Institute Co., Ltd., Beijing 102211, China.
Background: Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.
Objective: Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.
Curr Drug Deliv
January 2025
Department of Hepatobiliary Surgery, Ruian People's Hospital, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, China.
Background: Pancreatic cancer is a highly malignant tumor with a poor prognosis, and current treatment methods have limited effectiveness. Therefore, developing new and more effective therapeutic strategies is crucial. This study aims to establish pH-responsive silk fibroin (SF) nanoparticles encapsulating β-hydroxyisovalerylshikonin (SF@β-HIVS) to enhance the therapeutic effects against pancreatic cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!