The reliability and reproducibility of surface-enhanced Raman scattering (SERS) technology is still a great challenge in bio-related analysis. Prussian blue (PB)-based SERS tags have attracted increasing interest for improving these deficiencies due to its unique Raman band (near 2156 cm) in the Raman-silent region, providing zero-background bio-Raman labels without interference from endogenous biomolecules. Moreover, the stable PB shell consisting of multiple layers of CN reporters ensure a stable and strong Raman signal output, avoiding the desorption of the Raman reporter from the plasmonic region by the competitive adsorption of the analyte. More importantly, they possess outstanding multiplexing potential in biological analysis owing to the adjustable Raman shift with unique narrow spectral widths. Despite more attention having been attracted to the structure and preparation of PB-based SERS tags for their better biological applications over the past five years, there is still a great challenge for SERS suitable for applications in the actual environment. The biological applications of PB-based SERS tags are comprehensively recounted in this minireview, mainly focusing on quantification analysis, multiple-spectral analysis and cell-imaging joint phototherapy. The prospects of PB-based SERS tags in clinical diagnosis and treatment are also discussed. This review aims to draw attention to the importance of SERS tags and provide a reference for the design and application of PB-based SERS tags in future bio-applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417754 | PMC |
http://dx.doi.org/10.1039/d1na00464f | DOI Listing |
ACS Appl Bio Mater
December 2024
Department of Chemistry, Soongsil University, Seoul 06978, South Korea.
COVID-19 has become one of the deadliest epidemics in the past years. In efforts to combat the deadly disease besides vaccines, drug therapies, and facemasks, significant focus has been on designing specific methods for the sensitive and accurate detection of SARS-CoV-2. Of these, surface-enhanced Raman scattering (SERS) is an attractive analytical tool for the identification of SARS-CoV-2.
View Article and Find Full Text PDFAnal Chem
December 2024
Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
Commercial pregnancy test strips (PTS) possess the advantages of lower price, higher stability, and better repeatability and have been popularized to integrate with novel sensing strategies to detect other disease biomarkers, which accelerates the commercialization process of those novel sensing strategies. However, the current integration of novel sensing strategies into commercial PTS still faced the problems of insufficient quantification, low sensitivity, and lack of multiple detection capabilities. Hence, we proposed the concept of "visual classification recognition, spectral signal subdivision" for multiple hepatocellular carcinoma biomarkers (miRNA122 and miRNA233) detection with dual signals based on asymmetric competitive CRISPR (acCRISPR) and surface-enhanced Raman spectroscopy coupling with PTS, named the acCRISPR-PTS-SERS assay.
View Article and Find Full Text PDFBiosens Bioelectron
February 2025
Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. Electronic address:
SERS detects single molecules with exceptional sensitivity. To counter the issue of selectivity faced by point-of-care, herein, an externally applied electric field that allows electrical modulation and electromigrates unbound SERS tags without multiple washing steps is successfully developed and demonstrated to improve the biosensor's selectivity and sensitivity in multiplexed detection of cTnI, HDL, and LDL in human serum at a low LoD. Ultra-sensitive detectors can detect signals from non-specifically absorbed species, and these species can cover up overlapping analyte peaks, amplifying the effect of non-specific binding.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Department of Chemistry, Hankuk University of Foreign Studies (HUFS), Yongin 17035, Republic of Korea.
Surface-enhanced Raman scattering (SERS) is an innovative spectroscopic technique that amplifies the Raman signals of molecules adsorbed on rough metal surfaces, making it pivotal for single-molecule detection in complex biological and environmental matrices. This review aims to elucidate the design strategies and recent advancements in the application of standalone SERS nanoprobes, with a special focus on quantifiable SERS tags. We conducted a comprehensive analysis of the recent literature, focusing on the development of SERS nanoprobes that employ novel nanostructuring techniques to enhance signal reliability and quantification.
View Article and Find Full Text PDFLab Chip
December 2024
College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
Cortisol, known as the "stress hormone", is secreted by the adrenal cortex. Measuring cortisol levels in body fluids is essential for evaluating stress levels, adrenal function, hormone imbalance, and psychological well-being. Early diagnosis and management of related conditions depend on this measurement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!