A NiFe layered double hydroxide-decorated N-doped entangled-graphene framework: a robust water oxidation electrocatalyst.

Nanoscale Adv

Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory Pune Maharastra India +91-20-25902636.

Published: April 2020

Three dimensional (3D) porous carbon materials are highly desirable for electrochemical applications owing to their high surface area and porosity. Uniformly distributed porosity in the 3D architecture of carbon support materials allows reactant molecules to access more electrochemically active centres and simultaneously facilitate removal of the product formed during electrochemical reactions. Herein, we have prepared a nitrogen-doped entangled graphene framework (NEGF), decorated with NiFe-LDH nanostructures by an solvothermal method followed by freeze-drying at high vacuum pressure and low temperature. The freeze-drying method helped to prevent the restacking of the graphene sheets and the formation of a high surface area nitrogen-doped entangled graphene framework (NEGF) supported NiFe-LDHs. The incorporation of the NEGF has significantly reduced the overpotential for the electrochemical oxygen evolution reaction (OER) in 1 M KOH solution. This corresponds to an overpotential reduction from 340 mV for NiFe-LDHs to 290 mV for NiFe-LDH/NEGF to reach the benchmark current density of 10 mA cm. The preparation of the catalyst is conceived through a low-temperature scalable process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419039PMC
http://dx.doi.org/10.1039/c9na00808jDOI Listing

Publication Analysis

Top Keywords

high surface
8
surface area
8
nitrogen-doped entangled
8
entangled graphene
8
graphene framework
8
framework negf
8
nife layered
4
layered double
4
double hydroxide-decorated
4
hydroxide-decorated n-doped
4

Similar Publications

Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.

View Article and Find Full Text PDF

Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.

View Article and Find Full Text PDF

High-Density Polyethylene Janus Fibrous Membrane with Enhanced Breathability and Moisture Permeability via PDA Assisted Hydrophilic Modification.

Macromol Rapid Commun

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Functional fibrous membranes with high mechanical properties are intensively developed for different application fields. In this study, to enhance moisture and air permeability without compromising mechanical strength, a facile float-surface modification strategy is employed to fabricate Janus fibrous membranes with distinct hydrophobicity/hydrophilicity using the high-density polyethylene (HDPE) fibrous membranes. By coating one side of the HDPE fibrous membranes with polydopamine (PDA) and a superhydrophilic polyelectrolyte, the obtained Janus HDPE fibrous membranes demonstrate an excellent water transmission rate (577.

View Article and Find Full Text PDF

Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.

View Article and Find Full Text PDF

Liquid-Metal-Based Multichannel Strain Sensor for Sign Language Gesture Classification Using Machine Learning.

ACS Appl Mater Interfaces

January 2025

Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.

Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!