AI Article Synopsis

  • Designing catalysts with controlled morphology and structure is crucial for enhancing fuel cell energy efficiency.
  • A novel method using Cu nanowires as templates and ascorbic acid for reduction successfully synthesizes PtCu bimetallic nanostructures with tunable compositions and crystal structures.
  • Experimentation and DFT calculations reveal that these PtCu alloys exhibit improved performance in methanol electrooxidation, highlighting their potential for stable and efficient electrocatalysis in fuel cells.

Article Abstract

Designing effective catalysts by controlling morphology and structure is key to improving the energy efficiency of fuel cells. A good understanding of the effects of specific structures on electrocatalytic activity, selectivity, and stability is needed. Here, we propose a facile method to synthesize PtCu bimetallic nanostructures with controllable compositions by using Cu nanowires as a template and ascorbic acid as a reductant. A further annealing process provided the alloy PtCu with tunable crystal structures. The combination of distinct structures with tunable compositions in the form of PtCu nanowires provides plenty of information for better understanding the reaction mechanism during catalysis. HClO cyclic voltammetry (CV) tests confirmed that various phase transformations occurred in bimetallic and alloy samples, affecting morphology and unit cell structures. Under a bifunctional synergistic effect and the influence of the insertion of a second metal, the two series of structures show superior performance toward methanol electrooxidation. Typically, the post-product alloy A-PtCu with a cubic structure ( = 3.702 Å) has better methanol oxidation reaction (MOR) catalysis performance. Density functional theory (DFT) calculations were performed to determine an optimal pathway using the Gibbs free energy and to verify the dependence of the electrocatalytic performance on the lattice structure overpotential changes. Bimetallic PtCu has high CO tolerance, maintaining high stability. This work provides an approach for the systematic design of novel catalysts and the exploration of electrocatalytic mechanisms for fuel cells and other related applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419734PMC
http://dx.doi.org/10.1039/d0na00076kDOI Listing

Publication Analysis

Top Keywords

methanol oxidation
8
oxidation reaction
8
fuel cells
8
ptcu
5
structures
5
bimetallic
4
bimetallic postsynthetically
4
postsynthetically alloyed
4
alloyed ptcu
4
ptcu nanostructures
4

Similar Publications

Purpose: Acanthamoeba species are eucaryotic protozoa found predominantly in soil and water. They cause ulceration and vision loss in the cornea (Acanthamoeba keratitis) and central nervous system (CNS) infection involving the lungs (granulomatous amoebic encephalitis). Antiparasitic drugs currently used in the treatment of infections caused by Acanthamoeba species are not effective at the desired level in some anatomical regions such as the eye and CNS.

View Article and Find Full Text PDF

Reactivity of Imidazole- and Pyridine-Carboxaldehydes for Gem-Diol and Hemiacetal Generation: Theoretical and Experimental Insights.

ChemistryOpen

January 2025

Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Department of Chemistry, Ciudad Autónoma de Buenos Aires, 1113, Argentina.

Gem-diols are defined as organic molecules carrying two hydroxyl groups at the same carbon atom, which is the result of the nucleophilic addition of water to a carbonyl group. In this work, the generation of the hydrated or hemiacetal forms using pyridine- and imidazole-carboxaldehyde isomers in different chemical environments was studied by Nuclear Magnetic Resonance (NMR) recorded in different media and combined with theoretical calculations. The change in the position of aldehyde group in either the pyridine or the imidazole ring had a clear effect in the course of the hydration/hemiacetal generation reaction, which was favored in protic solvents mainly in the presence of methanol.

View Article and Find Full Text PDF

Alzheimer's disease (AD) poses a global health challenge, demanding innovative approaches for effective treatments. Clerodendrum infortunatum Linn. (Lamiaceae) is a shrub traditionally used as a medicinal plant to treat inflammation, skin diseases, and bronchitis.

View Article and Find Full Text PDF

Carbon-supported Pt-based catalysts are the most effective catalysts for direct methanol fuel cells (DMFCs). However, challenges such as high Pt loading, cost, and susceptibility to CO poisoning severely hinder the development of DMFCs. In this paper, CoFeO@polymer@ZIF-67 is prepared successfully through sequential solution polymerization and in situ growth with modified CoFeO as the core.

View Article and Find Full Text PDF

Generating Strong Metal-Support Interaction and Oxygen Vacancies in Cu/MgAlO Catalysts by CO Treatment for Enhanced CO Hydrogenation to Methanol.

ACS Appl Mater Interfaces

January 2025

Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China.

Strong metal-support interactions (SMSIs) are essential for optimizing the performance of supported metal catalysts by tuning the metal-oxide interface structures. This study explores the hydrogenation of CO to methanol over Cu-supported catalysts, focusing on the synergistic effects of strong metal-support interaction (SMSI) and oxygen vacancies introduced by the CO treatment to the catalysts on the catalytic performance. Cu nanoparticles were immobilized on Mg-Al layered double oxide (LDO) supports and modified with nitrate ions to promote oxygen vacancy generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!