Development of cost-effective and efficient non noble metal electrocatalysts has immense importance towards sustainable energy technologies. Herein, a newly constructed porous Co(ii)-metal organic framework (MOF) has been utilized for the synthesis of cobalt nanoparticles embedded in N-doped porous carbon, (Co@NPC), a facile MOF-annealing strategy, at an optimum temperature of 800 °C under an argon atmosphere. DMF molecules present in the form of solvated guests and cations within the 3D-framework serve as a source for N-doping during the formation of the porous graphitic carbon upon carbonization. The nanocomposite was found to encapsulate homogeneously dispersed cobalt nanoparticles within the N-doped porous carbonaceous matrix. The synergistic effect of cobalt nanoparticles and the heteroatom-doped carbon framework makes Co@NPC electrochemically active towards both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) under alkaline conditions. Furthermore, Co@NPC exhibits outstanding performance as a bifunctional electrocatalyst towards electrochemical water splitting with remarkable stability and durability. It achieves a current density of 10 mA cm at a low cell voltage of 1.66 V in 1 M NaOH solution which is comparable with that of most of the self-templated ZIF-derived non-noble metal electrocatalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418607PMC
http://dx.doi.org/10.1039/c9na00169gDOI Listing

Publication Analysis

Top Keywords

cobalt nanoparticles
16
nanoparticles embedded
8
porous carbon
8
bifunctional electrocatalyst
8
water splitting
8
metal electrocatalysts
8
n-doped porous
8
evolution reaction
8
porous
5
mof-templated cobalt
4

Similar Publications

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

In this study, we present a novel approach using amperometric microsensors to detect quercetin in cosmetic formulations and track its metabolic behavior after topical application. This method offers a sensitive, real-time alternative to conventional techniques, enabling the detection of quercetin's bioavailability, its transformation into active metabolites, and its potential therapeutic effects when applied to the skin. Quercetin (Q) is a bioactive flavonoid known for its potent antioxidant properties, naturally present in numerous plants, particularly those with applications in cosmetic formulations.

View Article and Find Full Text PDF

Ultrasensitive electrochemical detection of gallic acid in beverages based on nitrogen-doped multi-walled carbon nanotube networks embellished with cobalt 2-methylimidazole nanoparticles.

Food Chem

January 2025

Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:

This work presents a convenient and easy-to-operate method for synthesizing the functionally integrated nanocomposite of nitrogen-doped multi walled carbon nanotube networks (N-CNTs) and cobalt 2-methylimidazole (ZIF-67) nanoparticles. The N-CNTs@ZIF-67 nanocomposite was utilized to design a novel electrochemical sensing platform for detecting gallic acid (GA). The N-CNTs@ZIF-67 modified glass carbon electrode (GCE) demonstrated high sensitivity for GA electrochemical detection (LOD: 10.

View Article and Find Full Text PDF

Interfacial Properties of Gold and Cobalt Oxyhydroxide in Plasmon-Mediated Oxygen Evolution Reaction.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, California 94132, United States.

Water electrolysis is a green method of storing electrical energy in the chemical bonds of high-energy hydrogen gas (H). However, the anodic oxygen evolution reaction (OER) requires a significant kinetic overpotential, limiting the electrolysis rate. Recently, plasmonic gold nanoparticles (Au NPs) have been introduced to improve charge transfer at the interface between the OER electrocatalysts and the electrolyte under light illumination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!