Amino transaminases (ATAs) have been supported on a 2D ITQ-2 zeolite through electrostatic interactions, resulting in a highly stable active biocatalyst to obtain a variety of valuable chiral amines starting from prochiral ketones derived from biomass. We have extended the biocatalyst applications by designing a chemo-enzymatic process that allows, as the first step, prochiral ketones to be obtained from biomass-derived compounds through an aldol condensation-reduction step using a bifunctional metal/base catalyst. The prochiral ketone is subsequently converted into the chiral amine using the immobilized ATA. We show that it is feasible to couple both steps in a semi-continuous process to produce industrially relevant chiral amines with yields of >95% and ∼100% enantiomer excess.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479500PMC
http://dx.doi.org/10.1093/nsr/nwac135DOI Listing

Publication Analysis

Top Keywords

chiral amines
12
valuable chiral
8
prochiral ketones
8
enzymatic chemo-enzymatic
4
chemo-enzymatic strategies
4
strategies produce
4
produce highly
4
highly valuable
4
chiral
4
amines biomass
4

Similar Publications

Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.

View Article and Find Full Text PDF

Reductive amination is one of the most synthetically direct routes to access chiral amines. Several Imine Reductases (IREDs) have been discovered to catalyze reductive amination (Reductive Aminases or RedAms), yet they are dependent on the expensive phosphorylated nicotinamide adenine dinucleotide cofactor NADPH and usually more active at basic pH. Here, we describe the discovery and synthetic potential of an IRED from (RedAm) that catalyzes reductive amination between a series of medium to large carbonyl and amine compounds with conversions of up to >99% and 99% enantiomeric excess at neutral pH.

View Article and Find Full Text PDF

Chiral heterocyclic alcohols and amines are frequently used building blocks in the synthesis of fine chemicals and pharmaceuticals. Herein, we report a one-pot photoenzymatic synthesis route for -Boc-3-amino/hydroxy-pyrrolidine and -Boc-4-amino/hydroxy-azepane with up to 90% conversions and >99% enantiomeric excess. The transformation combines a photochemical oxyfunctionalization favored for distal C-H positions with a stereoselective enzymatic transamination or carbonyl reduction step.

View Article and Find Full Text PDF

Small-molecule probes are powerful tools for studying biological systems and can serve as lead compounds for developing new therapeutics. Especially, nitrogen heterocycles are of considerable importance in the pharmaceutical field. These compounds are found in numerous bioactive structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!