A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoconfined anti-oxidizing RAFT nitroxide radical polymer for reduction of low-density lipoprotein oxidation and foam cell formation. | LitMetric

Atherosclerosis is a leading cause of death worldwide. Antioxidant therapy has been considered a promising treatment modality for atherosclerosis, since reactive oxygen species (ROS) play a major role in the pathogenesis of atherosclerosis. We developed ROS-scavenging antioxidant nanoparticles (NPs) that can serve as an effective therapy for atherosclerosis. The newly developed novel antioxidant ROS-eliminating NPs were synthesized reversible addition-fragmentation chain-transfer (RAFT) polymerization and act as a superoxide dismutase (SOD) mimetic agent. SOD is an anti-ROS enzyme which is difficult to use for passive delivery due to its low half-life and stability. Copolymers were synthesized using different feed ratios of 2,2,6,6-tetramethyl-4-piperidyl methacrylate (PMA) and glycidyl methacrylate (GMA) monomers and an anti-ROS nitroxyl radical polymer was prepared oxidation. The copolymer was further conjugated with a 6-aminofluorescein a oxirane ring opening reaction for intracellular delivery in RAW 264.7 cells. The synthesized copolymers were blended to create NPs (∼150 nm size) in aqueous medium and highly stable up to three weeks. The NPs were shown to be taken up by macrophages and to be cytocompatible even at high dose levels (500 μg mL). Finally, the nitroxide NPs has been shown to inhibit foam cell formation in macrophages by decreasing internalization of oxidized low-density lipoproteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418007PMC
http://dx.doi.org/10.1039/d1na00631bDOI Listing

Publication Analysis

Top Keywords

radical polymer
8
foam cell
8
cell formation
8
nps
5
nanoconfined anti-oxidizing
4
anti-oxidizing raft
4
raft nitroxide
4
nitroxide radical
4
polymer reduction
4
reduction low-density
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!