Donor-acceptor molecules are a subject of great attention due to their immense potential in molecular electronics and photovoltaics. Despite numerous extensive studies demonstrating their functionality in solution, the donor-acceptor character is usually lost upon adsorption on a conducting substrate. Here the concept of breaking the conjugation between the donor and acceptor unit by insertion of a bridge is used. Furthermore, the bridge introduces a kink into the dyad and thus, reduces the possibility of hybridization with the substrate. A donor-bridge-acceptor dyad composed of carbazole and phenalenone units joined through a flexible bridge is synthesized and deposited on a Pt(111) surface. Its electronic properties are investigated with a combination of low temperature scanning tunneling microscope measurements and density functional theory simulations. Two preferential adsorption configurations are identified, in which individual molecules form strong bonds to the substrate and to a Pt adatom. Differential conductance measurements and atomistic simulations evidence the preservation of a reduced donor-acceptor character upon adsorption of the molecule, where this reduction is ascribed to the strong molecule-metal hybridization. Our results highlight the changes in donor-acceptor character of the dyad induced by the substrate and provide guidelines for the use of donor-bridge-acceptor molecules as functional units in solid-state devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418732 | PMC |
http://dx.doi.org/10.1039/d0na00925c | DOI Listing |
Curr Microbiol
January 2025
Industrial and Surface Engineering Laboratory, Bioprocess and Biointerfaces Team, Department of Life Sciences, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco.
Salmonella Typhi can adhere to and build biofilms on the surface of gallstones causing abnormal gallbladder mucosa, which could lead to carcinogenesis. The surface physicochemical properties of microbial cells and materials have been shown to play a crucial role in adhesion. Therefore, the purpose of this study was to investigate, for the first time, the surface properties of nine gallstones and to evaluate the influence of these parameters on the theoretical adhesion of S.
View Article and Find Full Text PDFChemistry
December 2024
Panepistimio Ioanninon, Chemistry, Panepistimioupolis, 45110, Ioannina, GREECE.
Covalent organic frameworks (COFs) are considered advanced class materials due to their exotic structural and optical properties. The abundance of starting monomers with variable linkage motifs may give rise to multiple conformations in either 2D or 3D fashion. Tailoring of the abovementioned properties has facilitated the application of COFs in a wide range of applications, which are strongly correlated with energy conversion schemes.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States.
Donor-acceptor dyads are promising materials for improving triplet-sensitized photon upconversion due to faster intramolecular energy transfer (ET), which unfortunately competes with charge transfer (CT) dynamics. To circumvent the issue associated with CT, we propose a novel purely organic donor-acceptor dyad, where the CT character is confined within the donor moiety. In this work, we report the synthesis and characterization of a stable organic radical donor-triplet acceptor dyad () consisting of the acceptor perylene () linked to the donor (4--carbazolyl-2,6-dichlorophenyl)-bis(2,4,6-trichlorophenyl)methyl radical ().
View Article and Find Full Text PDFChempluschem
December 2024
Faculty of Chemistry, University of Bucharest, Şoseaua Panduri 90, Bucharest, 050663, Romania.
Using as example the [Fe(bpca)(μ-bpca)Gd(NO)]×4CHNO×CHOH system, where Hbpca=bis(2-pyridilcarbonyl)amine), we perform the analysis of bonding components inside the d and f coordination units and between molecular entities from crystal. Aside the nominal long-range interactions between molecular components of the crystal, we considered that the bonding inside the coordination units is also not a covalent regime. We performed Density Functional Theory (DFT) calculations, with plane-waves (PW), in band-structure mode, and with atom-centred bases, by molecular procedures.
View Article and Find Full Text PDFChemphyschem
November 2024
College of Design and Manufacturing Technology, Muroran Institute of Technology, Mizumoto-cho, Muroran, 050-8585, Japan.
Highly emissive Zn-Ag-In-S nanocrystals have attracted attention as derivatives of I-III-VI-type nanocrystals without the use of toxic elements. The wide tunability of their luminescence wavelengths is attributed to the controllable bandgap of the solid solution between ZnS and AgInS. However, enhancement of the photoluminescence quantum yield (PL-QY) depending on the chemical composition has not been elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!