The Schottky barrier of a metal-semiconductor junction is one of the key quantities affecting the charge transport in a transistor. The Schottky barrier height depends on several factors, such as work function difference, local atomic configuration in the interface, and impurity doping. We show that also the presence of interface states at 2D metal-semiconductor junctions can give rise to a large renormalization of the effective Schottky barrier determined from the temperature dependence of the current. We investigate the charge transport in n- and p-doped monolayer MoTe 1T'-1H junctions using quantum transport calculations. The Schottky barriers are extracted both from the projected density of states and the transmission spectrum, and by simulating the IT-characteristic and applying the thermionic emission model. We find interface states originating from the metallic 1T' phase rather than the semiconducting 1H phase in contrast to the phenomenon of Fermi level pinning. Furthermore, we find that these interface states mediate large tunneling currents which dominates the charge transport and can lower the effective barrier to a value of only 55 meV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418679 | PMC |
http://dx.doi.org/10.1039/d0na00795a | DOI Listing |
ACS Sens
January 2025
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan.
The anomalous gas sensing behavior has garnered significant attention from researchers, prompting a re-evaluation of the gas sensing theory. This work focuses on inversion gas sensing behavior induced by element doping. W/Mo/Cr-doped VO(M1) samples are synthesized, and their sensing behaviors are investigated.
View Article and Find Full Text PDFNano Lett
January 2025
Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China.
Achieving high mobility while minimizing off-current and static power consumption is critical for applications of two-dimensional field-effect transistors. Herein, a selenium (Se) sacrificial layer is introduced between the rhenium sulfide (ReS) semiconductor and source/drain electrode. With the Se layer and postannealing process, the ReS transistor significantly decreases the off-state current with a substantial increase in the on-state current density.
View Article and Find Full Text PDFNano Lett
January 2025
Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China.
GaO Schottky photodiodes are being actively explored for solar-blind ultraviolet (SBUV) detection, owing to the fast photoresponse and easy fabrication. However, their performance, limited by the Schottky contact, mostly underperforms the expectations. Herein, a Ni/β-GaO vertical Schottky barrier diode (SBD) with an ultrathin anode electrode is demonstrated.
View Article and Find Full Text PDFACS Omega
December 2024
Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, India.
This work presents a density functional theory (DFT) study of substitutional and adsorption-based halogen (I or F) doping of WS-based transistors to enhance their contact properties. Substitutional doping of the WS monolayer with halogens results in -type behavior, while halogen adsorption on the surface of the WS monolayer induces -type behavior. This is attributed to differing directions of charge flow, as supported by the Mulliken analysis.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
Metal-organic gels (MOGs) are a type of supramolecular complex that have become highly intriguing due to their synergistic combination of inorganic and organic elements. We report the synthesis and characterization of a Ni-directed supramolecular gel using chiral amino acid L-DOPA (3,4-dihydroxy phenylalanine) containing ligand, which coordinates with Ni(II) to form metal-organic gels with exceptional properties. The functional Ni(II)-gel was synthesized by heating nickel(II) acetate hexahydrate and the L-DOPA containing ligand in DMSO at 70 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!