A simple pyrazoline-based ''turn off'' fluorescent sensor 5-(4-methoxyphenyl)-3-(5-methylfuran-2-yl)-1-phenyl-4,5-dihydro-1H-pyrazole (PFM) was synthesized and well characterized by different techniques such as FT-IR, H-NMR, C-NMR, and mass spectrometry. The synthesized sensor PFM was utilized for the detection of Fe ions. Fluorescence emission selectively quenched by Fe ions compared to other metal ions (Mn, Al, Fe, Hg, Cu, Co, Ni, Cd, Pb, and Zn) via paramagnetic fluorescence quenching and showed good anti-interference ability over the existence of other tested metals. Under optimum conditions, the fluorescence intensity of sensor quenched by Fe in the range of 0 to 3 μM with detection limit of 0.12 μM. Binding of Fe ions to PFM solution were studied by fluorescent titration, revealed formation of 1:1 PFM-Fe metal complex and binding constant of complex was found to be of 1.3 × 10 M. Further, the fluorescent sensor has been potentially used for the detection of Fe in environmental samples (river water, tap water, and sewage waste water) with satisfactory recovery values of 99-101%.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-022-03024-yDOI Listing

Publication Analysis

Top Keywords

fluorescent sensor
8
ions
5
sensor
5
fluorescence
4
fluorescence "turn-off"
4
"turn-off" sensing
4
sensing iron
4
iron iii
4
iii ions
4
ions utilizing
4

Similar Publications

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.

View Article and Find Full Text PDF

The detection of both Br and its derivative of tetrabutylammonium tribromide (TBATB) is a very important issue concerning their biological toxicity but remains challenging. Fluorescent sensing is one of the few methods possessing both selectivity and sensitivity. Moreover, it could be able to be utilized in biological system, but rarely reported.

View Article and Find Full Text PDF

Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.

View Article and Find Full Text PDF

Temperature-sensitive driving assembled fluorescence hydrogel based dual-mode sensor for adsorbing and detecting of heavy metal cadmium ions in food and water.

Food Chem

December 2024

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.

The denatured bovine serum albumin (dBSA) is coupled with the CdTe/CdS quantum dot and the resulting CdTe/CdS@dBSA complex is assembled and retained in the poly(n-isopropyl acrylamide) (PNIPAM) hydrogel via regulating temperature and pH to form the CdTe/CdS@dBSA-PNIPAM fluorescence hydrogel substrate, which is able to adsorb and sense cadmium ions (Cd). Based on this fluorescence hydrogel, a fluorescence and colorimetric dual-mode detection system is established to quantitatively detect Cd with a limit of detection (LOD) of 2.88 nM for fluorescence detection and 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!