Unconjugated bilirubin (UCB) confers Th17-cells immunosuppressive features by activating aryl-hydrocarbon-receptor, a modulator of toxin and adaptive immune responses. In Crohn's disease, Th17-cells fail to acquire regulatory properties in response to UCB, remaining at an inflammatory/pathogenic state. Here we show that UCB modulates Th17-cell metabolism by limiting glycolysis and through downregulation of glycolysis-related genes, namely phosphoglycerate-kinase-1 (PGK1) and aldolase-A (ALDOA). Th17-cells of Crohn's disease patients display heightened PGK1 and ALDOA and defective response to UCB. Silencing of PGK1 or ALDOA restores Th17-cell response to UCB, as reflected by increase in immunoregulatory markers like FOXP3, IL-10 and CD39. In vivo, PGK1 and ALDOA silencing enhances UCB salutary effects in trinitro-benzene-sulfonic-acid-induced colitis in NOD/scid/gamma humanized mice where control over disease activity and enhanced immunoregulatory phenotypes are achieved. PGK1 and/or ALDOA blockade might have therapeutic effects in Crohn's disease by favoring acquisition of regulatory properties by Th17-cells along with control over their pathogenic potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492699 | PMC |
http://dx.doi.org/10.1038/s42003-022-03913-9 | DOI Listing |
J Transl Med
December 2024
Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
Background: Glycolysis plays a major role in progression of idiopathic pulmonary fibrosis (IPF). Here, we aim to explore the predictive signature based on glycolysis-related genes for predicting the prognosis and identified a potential therapeutic target for IPF.
Methods: Gene expression data of bronchoalveolar lavage (BAL) cells and clinical information were downloaded from the Gene Expression Omnibus database.
Sci Rep
September 2024
Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
Therapy targeting the BRAF-MEK cascade created a treatment revolution for patients with BRAF mutant advanced melanoma. Unfortunately, 80% patients treated will progress by 5 years follow-up. Thus, it is imperative we study mechanisms of melanoma progression and therapeutic resistance.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Department of Translational Research, Dasman Diabetes Institute, Kuwait City 15462, Kuwait.
Alzheimer's disease (AD), the leading cause of dementia worldwide, remains a challenge due to its complex origin and degenerative character. The need for accurate biomarkers and treatment targets hinders early identification and intervention. To fill this gap, we used a novel longitudinal proteome methodology to examine the temporal development of molecular alterations in the cortex of an intracerebroventricular streptozotocin (ICV-STZ)-induced AD mouse model for disease initiation and progression at one, three-, and six-weeks post-treatment.
View Article and Find Full Text PDFiScience
May 2024
Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan.
Lysosomes, the hub of metabolic signaling, are associated with various diseases and participate in autophagy by supplying nutrients to cells under nutrient starvation. However, their function and regulation under glucose starvation remain unclear and are studied herein. Under glucose starvation, lysosomal protein expression decreased, leading to the accumulation of damaged lysosomes.
View Article and Find Full Text PDFAnimals (Basel)
November 2023
Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China.
The aim of this study was to investigate the molecular mechanisms by which hypoxia affects the biological behavior of yak PASMCs, the changes in the histological structure of yak and cattle lungs, and the relationships and regulatory roles that exist regarding the differences in the distribution and expression of PDK1 and its hypoxia-associated factors screened for their role in the adaptation of yak lungs to the plateau hypoxic environment. The results showed that, at the level of transcriptome sequencing, the molecular regulatory mechanisms of the HIF-1 signaling pathway, glucose metabolism pathway, and related factors (HK2/PGK1/ENO1/ENO3/ALDOC/ALDOA) may be closely related to the adaptation of yaks to the hypoxic environment of the plateau; at the tissue level, the presence of filled alveoli and semi-filled alveoli, thicker alveolar septa and basement membranes, a large number of erythrocytes, capillary distribution, and collagen fibers accounted for all levels of fine bronchioles in the lungs of yaks as compared to cattle. A higher percentage of goblet cells was found in the fine bronchioles of yaks, and PDK1, HIF-1α, and VEGF were predominantly distributed and expressed in the monolayers of ciliated columnar epithelium in the branches of the terminal fine bronchioles of yak and cattle lungs, with a small amount of it distributed in the alveolar septa; at the molecular level, the differences in PDK1 mRNA relative expression in the lungs of adult yaks and cattle were not significant ( > 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!