Next-generation sequencing technology may clarify microbiota that are as yet poorly understood in the soil, the rhizosphere, and the phyllosphere of vineyards. To provide new information on the interaction between grapevine and microorganisms, we focused on the endophytic microbiota in grapevine. We performed endophytic microbiome analysis of the shoot xylems of four cultivars, Vitis vinifera cvs. Chardonnay, Pinot Noir, Cabernet Sauvignon, and Vitis sp. cv. Koshu, grown in eleven vineyards in Japan. The number of endophytic fungal species was small in the grapevine shoot xylems and could not be analyzed further, whereas a total of 7,019,600 amplicon sequences (46,642-285,003 per shoot xylem) and 1305 bacterial operational taxonomic units were obtained by analysis of the V3-V4 region of the bacterial 16S rRNA gene. Gammaproteobacteria was predominant in the shoot xylems at the shoot elongation stage irrespective of the cultivar, whereas Alphaproteobacteria and Oxyphotobacteria were predominant at véraison. Actinobacteria, Bacteroidia, Bacilli, and Clostridia were also detected in the shoot xylems. The endophytic bacterial microbiota in Koshu and Pinot Noir shoot xylems were similar irrespective of the grapevine-growing region. In contrast, the endophytic bacterial microbiota in Chardonnay and Cabernet Sauvignon showed diversity and complexity among grapevine-growing regions. Alpha diversity analysis revealed that Koshu shoot xylems had a higher diversity of endophytic bacterial microbiota than Pinot Noir, Chardonnay, and Cabernet Sauvignon shoot xylems, and that grapevine shoot xylems at the shoot elongation stage had a higher diversity of endophytic bacterial microbiota than those at véraison. Principal coordinate analysis (PCoA) demonstrated that the profiles of the endophytic bacterial microbiota in grapevine shoot xylems at véraison were relatively uniform compared with those at the shoot elongation stage. Multidimensional scaling analysis showed that the plots of all cultivars were generally apart from each other at the shoot elongation stage and then became close to each other at véraison. The plots of all grapevine-growing regions cultivating Koshu were close to each other, whereas those of grapevine-growing regions cultivating Chardonnay and Cabernet Sauvignon were apart from each other. The findings of this study suggest that the endophytic bacterial microbiota in grapevine shoot xylems varied depending on the cultivar and the grapevine-growing region even for the same cultivars, and that the microbiota fluctuated depending on the shoot growth stage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492663 | PMC |
http://dx.doi.org/10.1038/s41598-022-20221-8 | DOI Listing |
BMC Plant Biol
January 2025
Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P. O. Box 17719-14911, Tehran, Iran.
Selenium (Se) plays a crucial role in ameliorating the negative impact of abiotic stress. The present study was performed to elucidate the efficacy of soil treatment of Se in reducing salt-induced stress in Carthamus tinctorius L. In this study, three different levels of NaSeO (0, 0.
View Article and Find Full Text PDFNat Plants
January 2025
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
Arabidopsis PHOSPHATE 1 (AtPHO1) and its closest homologue AtPHO1;H1 are phosphate transporters that load phosphate into the xylem vessel for root-to-shoot translocation. AtPHO1 and AtPHO1;H1 are prototypical members of the unique SPX-EXS family, whose structural and molecular mechanisms remain elusive. In this study, we determined the cryogenic electron microscopy structure of AtPHO1;H1 binding with inorganic phosphate (Pi) and inositol hexakisphosphate in a closed conformation.
View Article and Find Full Text PDFQuant Plant Biol
January 2025
Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
Silicon (Si), the most abundant mineral element in soil, functions as a beneficial element for plant growth. Higher Si accumulation in the shoots is required for high and stable production of rice, a typical Si-accumulating plant species. During the last two decades, great progresses has been made in the identification of Si transporters involved in uptake, xylem loading and unloading as well as preferential distribution and deposition of Si in rice.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:
Numerous studies in various species have demonstrated that the application of an electric field can improve plant growth. However, plants showed inconsistent responses and the background mechanism for responses to electric fields remain unclear. Here, to deepen our understanding of the mechanisms involved in electric field-induced changes in physiology, we investigated the effects of electric fields on the growth and development of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFPlant Dis
December 2024
Liaoning Institute of Economic Forestry, Dalian, Liaoning, China;
Aralia elata (Miq.) Seem, is an important cash crop in northeastern China. The tender shoots are rich in amino acids, vitamins, and trace elements, and the saponins of leaves and roots have antioxidant and immune-boosting properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!